• Title/Summary/Keyword: 학습지능

Search Result 3,110, Processing Time 0.03 seconds

Development of Elementary School AI Education Contents using Entry Text Model Learning (엔트리 텍스트 모델 학습을 활용한 초등 인공지능 교육 내용 개발)

  • Kim, Byungjo;Kim, Hyenbae
    • Journal of The Korean Association of Information Education
    • /
    • v.26 no.1
    • /
    • pp.65-73
    • /
    • 2022
  • In this study, by using Entry text model learning, educational contents for artificial intelligence education of elementary school students are developed and applied to actual classes. Based on the elementary and secondary artificial intelligence content table, the achievement standards of practical software education and artificial intelligence education will be reconstructed.. Among text, images, and sounds capable of machine learning, "production of emotion recognition programs using text model learning" will be selected as the educational content, which can be easily understood while reducing data preparation time for elementary school students. Entry artificial intelligence is selected as an education platform to develop artificial intelligence education contents that create emotion recognition programs using text model learning and apply them to actual elementary school classes. Based on the contents of this study, As a result of class application, students showed positive responses and interest in the entry AI class. it is suggested that quantitative research on the effectiveness of classes for elementary school students is necessary as a follow-up study.

Construction of Artificial Intelligence Training Platform for Machine Learning Based on Web Radiology_CDM (Web Radiology_CDM기반 기계학습을 위한 인공지능 학습 플랫폼 구축)

  • Noh, Si-Hyeong;Kim, SeungJin;Kim, Ji-Eon;Lee, Chungsub;Kim, Tae-Hoon;Kim, KyungWon;Kim, Tae-Gyu;Yoon, Kwon-Ha;Jeong, Chang-Won
    • Annual Conference of KIPS
    • /
    • 2020.05a
    • /
    • pp.487-489
    • /
    • 2020
  • 인공지능 기술을 도입한 의료분야에서 진단 및 예측과 연계한 임상의사결정지원 시스템(CDSS)에 관련된 연구가 활발하게 진행되고 있다. 특히, 인공지능 기술 적용에 가장 많은 이슈를 일으키고 있는 의료영상기반의 질환진단연구가 다양한 제품으로 출시되고 있는 실정이다. 그러나 의료영상 데이터는 일관되지 않은 데이터들로 이루어져 있으며, 그것을 정제하여 연구에 사용하기 위해서는 상당한 시간이 필요한 것이 현실이다. 본 논문에서는 익명화된 데이터를 정제하여 인공지능 연구에 사용할 수 있는 표준화된 데이터 셋을 만들고, 그 데이터를 기반으로 인공지능 알고리즘 개발 연구를 지원하기 위한 원스톱 인공지능학습 플랫폼에 대하여 기술한다. 이를 위해 전체 인공지능 연구프로세스를 보이고 이에 따라 학습을 위한 데이터셋 생성과 인공지능 학습학습용 플랫폼에서 수행되는 수행 과정을 결과로 보인다 제안한 플랫폼을 통해 다양한 영상기반 인공지능 연구에 활용될 것으로 기대하고 있다.

A New Learning Scheme for Implementation of FNNs (FNNs 구현을 위한 새로운 학습 방안)

  • 최명렬;조화현
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.118-121
    • /
    • 2000
  • 본 논문에서는 FNNs(feedforwad neural networks)구현을 위한 새로운 학습 방안을 제안하였다. 제안된 방식은 온 칩 학습이 가능하도록 FNNs와 학습회로 사이에 스위칭 회로를 추가하여 단일패턴과 다중패턴 학습이 가능하도록 구현하였다. 학습 회로는 MEBP(modified error back-propagation) 학습 규칙을 적용하였고 간단한 비선형 시냅스 회로를 이용하여 구현하였다. 제안된 방식은 표준 CMOS 공정으로 구현되었고, MOSIS AMI $1.5\mu\textrm{m}$공정 HSPICE 파라메터를 이용하여 그 동작을 검증하였다. 제안된 학습방안 및 비선형 회로는 향후 학습 기능을 가진 대규모의 FNNs 구현에 매우 적합하리라 예상된다.

  • PDF

The Structural Relationships among Emotional Intelligence, Communication Ability, Collective Intelligence, Learning Satisfaction and Persistence in Collaborative Learning of the College Classroom (대학생의 협력학습에서 감성지능, 의사소통능력, 집단지성, 학습만족도 및 학습지속의향 간의 구조적 관계)

  • Song, Yun-Hee
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.1
    • /
    • pp.120-127
    • /
    • 2020
  • The purpose of this study was to examine related variables that improve learning outcomes in collaborative learning. Based on literature reviews, emotional intelligence was used as a variable of personal character, communication ability and collective intelligence were used as variables in learning process, and learning satisfaction, and persistence were used as variables of learning outcomes. Data were collected from 3,475 students at A university, and were analyzed using structural equation modeling. The results of this study are as follows: First, it turned out that emotional intelligence had a significant and positive impact on communication ability, collective intelligence, learning satisfaction, and persistence. Second, communication ability influenced collective intelligence and persistence positively. Third, collective intelligence influenced learning satisfaction and persistence positively. Fourth, learning satisfaction had a significant and positive impact on persistence. These findings offer basic data for collaborative learning by revealing the structural relationships among related variables that improve learning outcomes in collaborative learning of college students.

생물정보학을 위한 인공지능 기법

  • Jang, Byeong-Tak;Kim, Seong-Dong
    • Journal of Scientific & Technological Knowledge Infrastructure
    • /
    • s.3
    • /
    • pp.76-83
    • /
    • 2000
  • 인공지능(artificial intelligence)은 컴퓨터를 보다 지능적으로 만들기 위한 추론과 학습 방법에 관해 연구하는 컴퓨터 과학의 한 분야다. 특히 기계학습(machine learning)은 지식을 자동으로 획득하기 위한 원리와 기법을 개발하는 인공지능의 한 분야로서 생물정보학의 많은 중요한 문제 해결을 위한 매우 유용한 도구가 되고 있다.

  • PDF

Locomotion of Crawling Robots Based on Reinforcement Learning and Meta-Learning (강화학습 기법과 메타학습을 이용한 기는 로봇의 이동)

  • Mun, Yeong-Jun;Jeong, Gyu-Baek;Park, Ju-Yeong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.395-398
    • /
    • 2007
  • 최근 인공지능 분야에서는 강화학습(Reinforcement Learning)에 대한 관심이 크게 증폭되고 있으며, 여러 관련 분야에 적용되고 있다. 본 논문에서는 강화학습 기법 중 액터-크리틱 계열에 속하는 RLS-NAC 알고리즘을 활용하여 Kimura의 기는 로봇의 이동을 다룰 때에 중요 파라미터의 결정을 위하여 meta-learning 기법을 활용하는 방안에 고려한다.

  • PDF

A Study of Real Time Object Tracking using Reinforcement Learning (강화학습을 사용한 실시간 이동 물체 추적에 관한 연구)

  • 김상헌;이동명;정재영;운학수;박민욱;김관형
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.87-90
    • /
    • 2003
  • 과거의 이동로봇 시스템은 완전한 자율주행이 주된 목표였으며 그때의 영상정보는 단지 모니터링을 하는 보조적인 수단으로 사용되었다. 그러나 지금은 이동 물체의 추적, 대상 물체의 인식과 판별, 특징 추출과 같은 다양한 응용분야에서 영상정보를 이용하는 연구가 활발히 진행되고 있다 또한 제어 측면에서는 전통적인 제어기법으로는 해결하기 힘들었던 여러 가지 비선형적인 제어를 지능제어 방법을 통하여 많이 해결하곤 하였다. 그러한 지능제어에서 신경망을 많이 사용하기도 한다. 최근에는 신경망의 학습에 많이 사용하는 방법 중 강화학습이 많이 사용되고 있다. 강화학습이란 동적인 제어평면에서 시행착오를 통해, 목적을 이루기 위해 각 상황에서 행동을 학습하는 방법이다. 그러므로 이러한 강화학습은 수많은 시행착오를 거쳐 그 대응 관계를 학습하게 된다. 제어에 사용되는 제어 파라메타는 어떠한 상태에 처할 수 있는 상태와 행동들, 그리고 상태의 변화, 또한 최적의 해를 구할 수 있는 포상알고리즘에 대해 다양하게 연구되고 있다. 본 논문에서 연구한 시스템은 비젼시스템과 Strong Arm 보드를 이용하여 대상물체의 색상과 형태를 파악한 후 실시간으로 물체를 추적할 수 있게 구성하였으며, 또한 물체 이동의 비선형적인 경향성을 강화학습을 통하여 물체이동의 비선형성을 보다 유연하게 대처하여 보다 안정하고 빠르며 정확하게 물체를 추적하는 방법을 실험을 통하여 제안하였다.

  • PDF

A Study on Learner's Characteristics and Programming Skill in Computational Literacy Education - Focus on learning style and multiple intelligence - (Computational Literacy 교육에서 프로그래밍 능력과 학습자 특성에 관한 연구 - 학습스타일과 다중지능을 중심으로 -)

  • Kim, Soo-Hwan;Han, Seon-Kwan;Kim, Hyeon-Cheol
    • The Journal of Korean Association of Computer Education
    • /
    • v.13 no.2
    • /
    • pp.15-23
    • /
    • 2010
  • Computational Literacy education is being required in current digital age, but the educational strategy of it is lacking. In traditional education, instructors have been teaching by considering learners' characteristics for effective learning. It is necessary to investigate their characteristics for applying this method to computational literacy education. Therefore, we taught programming that is main area on computational literacy, and analyzed learners' characteristics focused on Felder's learning style and multiple intelligence. That is, we taught 194 university students computational literacy with scratch that was one of the popular educational programming languages, and analyzed the relation among learning style, multiple intelligence and the students' programming performance. Also, we found considerations through comparing students' characteristics with experts' ones.

  • PDF

Learning Method of Data Bias employing MachineLearningforKids: Case of AI Baseball Umpire (머신러닝포키즈를 활용한 데이터 편향 인식 학습: AI야구심판 사례)

  • Kim, Hyo-eun
    • Journal of The Korean Association of Information Education
    • /
    • v.26 no.4
    • /
    • pp.273-284
    • /
    • 2022
  • The goal of this paper is to propose the use of machine learning platforms in education to train learners to recognize data biases. Learners can cultivate the ability to recognize when learners deal with AI data and systems when they want to prevent damage caused by data bias. Specifically, this paper presents a method of data bias education using MachineLearningforKids, focusing on the case of AI baseball referee. Learners take the steps of selecting a specific topic, reviewing prior research, inputting biased/unbiased data on a machine learning platform, composing test data, comparing the results of machine learning, and present implications. Learners can learn that AI data bias should be minimized and the impact of data collection and selection on society. This learning method has the significance of promoting the ease of problem-based self-directed learning, the possibility of combining with coding education, and the combination of humanities and social topics with artificial intelligence literacy.

Design and Application of Artificial Intelligence Experience Education Class for Non-Majors (비전공자 대상 인공지능 체험교육 수업 설계 및 적용)

  • Su-Young Pi
    • Journal of Practical Engineering Education
    • /
    • v.15 no.2
    • /
    • pp.529-538
    • /
    • 2023
  • At the present time when the need for universal artificial intelligence education is expanding and job changes are being made, research and discussion on artificial intelligence liberal arts education for non-majors in universities who experience artificial intelligence as part of their job is insufficient. Although artificial intelligence education courses for non-majors are being operated, they are mainly operated as theory-oriented education on the concepts and principles of artificial intelligence. In order to understand the general concept of artificial intelligence for non-majors, it is necessary to proceed with experiential learning in parallel. Therefore, this study designs artificial intelligence experiential education learning contents of difficulty that can reduce the burden of artificial intelligence classes with interest in learning by considering the characteristics of non-majors. After, we will examine the learning effect of experiential education using App Inventor and the Orange artificial intelligence platform. As a result of analysis based on the learning-related data and survey data collected through the creation of AI-related projects by teams, positive changes in the perception of the need for AI education were found, and AI literacy skills improved. It is expected that it will serve as an opportunity for instructors to lay the groundwork for designing a learning model for artificial intelligence experiential education learning.