• Title/Summary/Keyword: 학습지능

Search Result 3,110, Processing Time 0.028 seconds

Nondestructive Quantification of Corrosion in Cu Interconnects Using Smith Charts (스미스 차트를 이용한 구리 인터커텍트의 비파괴적 부식도 평가)

  • Minkyu Kang;Namgyeong Kim;Hyunwoo Nam;Tae Yeob Kang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.28-35
    • /
    • 2024
  • Corrosion inside electronic packages significantly impacts the system performance and reliability, necessitating non-destructive diagnostic techniques for system health management. This study aims to present a non-destructive method for assessing corrosion in copper interconnects using the Smith chart, a tool that integrates the magnitude and phase of complex impedance for visualization. For the experiment, specimens simulating copper transmission lines were subjected to temperature and humidity cycles according to the MIL-STD-810G standard to induce corrosion. The corrosion level of the specimen was quantitatively assessed and labeled based on color changes in the R channel. S-parameters and Smith charts with progressing corrosion stages showed unique patterns corresponding to five levels of corrosion, confirming the effectiveness of the Smith chart as a tool for corrosion assessment. Furthermore, by employing data augmentation, 4,444 Smith charts representing various corrosion levels were obtained, and artificial intelligence models were trained to output the corrosion stages of copper interconnects based on the input Smith charts. Among image classification-specialized CNN and Transformer models, the ConvNeXt model achieved the highest diagnostic performance with an accuracy of 89.4%. When diagnosing the corrosion using the Smith chart, it is possible to perform a non-destructive evaluation using electronic signals. Additionally, by integrating and visualizing signal magnitude and phase information, it is expected to perform an intuitive and noise-robust diagnosis.

Marine-Life-Detection and Density-Estimation Algorithms Based on Underwater Images and Scientific Sonar Systems (수중영상과 과학어탐 시스템 기반 해양생물 탐지 밀도추정 알고리즘 연구)

  • Young-Tae Son;Sang-yeup Jin;Jongchan Lee;Mookun Kim;Ju Young Byon;Hyung Tae Moo;Choong Hun Shin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.5
    • /
    • pp.373-386
    • /
    • 2024
  • The aim of this study is to establish a system for the early detection of high-density harmful marine organisms. Considering its accuracy and processing speed, YOLOv8m (You Only Look Once version 8 medium) is selected as a suitable model for real-time underwater image-based object detection. Applying the detection algorithm allows one to detect numerous fish and the occasional occurrence of jellyfish. The average precision, recall rate, and mAP (mean Average Precision) of the trained model are 0.931, 0.881, and 0.948 for the validation data, respectively. Also, the mAP for each class is 0.97 for fish, 0.97 for jellyfish and 0.91 for salpa, all of which exceed 0.9 (90%) for classes demonstrating the excellent performance of the model. A scientific sonar system is used to address the object-detection range and validate the detection results. Additionally, integrating and grid averaging the echo strength allows the detection results to be smoothed in space and time. Mean-volume back-scattering strength values are obtained to reflect the detection variability within the analysis domain. Furthermore, an underwater image-based object (marine lives) detection algorithm, an image-correction technique based on the underwater environmental conditions (including nights), and quantified detection results based on a scientific sonar system are presented, which demonstrate the utility of the detection system in various applications.

AI-based early detection to prevent user churn in MMORPG (MMORPG 게임의 이탈 유저에 대한 인공지능 기반 조기 탐지)

  • Minhyuk Lee;Sunwoo Park;Sunghwan Lee;Suin Kim;Yoonyoung Cho;Daesub Song;Moonyoung Lee;Yoonsuh Jung
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.4
    • /
    • pp.525-539
    • /
    • 2024
  • Massive multiplayer online role playing game (MMORPG) is a common type of game these days. Predicting user churn in MMORPG is a crucial task. The retention rate of users is deeply associated with the lifespan and revenue of the service. If the churn of a specific user can be predicted in advance, targeted promotions can be used to encourage their stay. Therefore, not only the accuracy of churn prediction but also the speed at which signs of churn can be detected is important. In this paper, we propose methods to identify early signs of churn by utilizing the daily predicted user retention probabilities. We train various deep learning and machine learning models using log data and estimate user retention probabilities. By analyzing the change patterns in these probabilities, we provide empirical rules for early identification of users at high risk of churn. Performance evaluations confirm that our methodology is more effective at detecting high risk users than existing methods based on login days. Finally, we suggest novel methods for customized marketing strategies. For this purpose, we provide guidelines of the percentage of accessed users who are at risk of churn.

Legal Issues and Regulatory Discussions in Generative AI (생성형 AI의 법적 문제와 규제 논의 동향)

  • Kim, Beop-Yeon
    • Informatization Policy
    • /
    • v.31 no.3
    • /
    • pp.3-33
    • /
    • 2024
  • This paper summarizes the legal problems and issues raised in relation to generative AI. In addition, we looked at what regulatory discussions individual countries or international organizations have in order to solve or respond to these issues or to minimize the risks posed by generative AI. Infringement of individual basic rights raised by generative AI, the emergence and control of new crimes, monopolization of specific markets and environmental issues are mainly discussed, and although there are some differences in the necessity and direction of regulation, most countries seem to have similar views. Regarding AI, the issues that are currently being raised have been discussed continuously from the beginning of its appearance. Although certain issues have been discussed relatively much, there are some differences between countries, and situations that require consideration of phenomena different from the past are emerging. It seems that regulations and policies are being refined according to the situation of individual countries. In a situation where various issues are rapidly emerging and changing, measures to minimize the risk of AI and to enjoy the utility and benefits of AI through the use of safe AI should be sought. It will be necessary to continuously identify and analyze international trends and reorganize AI-related regulations and detailed policies suitable for Korea.

Korean Sentence Generation Using Phoneme-Level LSTM Language Model (한국어 음소 단위 LSTM 언어모델을 이용한 문장 생성)

  • Ahn, SungMahn;Chung, Yeojin;Lee, Jaejoon;Yang, Jiheon
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.71-88
    • /
    • 2017
  • Language models were originally developed for speech recognition and language processing. Using a set of example sentences, a language model predicts the next word or character based on sequential input data. N-gram models have been widely used but this model cannot model the correlation between the input units efficiently since it is a probabilistic model which are based on the frequency of each unit in the training set. Recently, as the deep learning algorithm has been developed, a recurrent neural network (RNN) model and a long short-term memory (LSTM) model have been widely used for the neural language model (Ahn, 2016; Kim et al., 2016; Lee et al., 2016). These models can reflect dependency between the objects that are entered sequentially into the model (Gers and Schmidhuber, 2001; Mikolov et al., 2010; Sundermeyer et al., 2012). In order to learning the neural language model, texts need to be decomposed into words or morphemes. Since, however, a training set of sentences includes a huge number of words or morphemes in general, the size of dictionary is very large and so it increases model complexity. In addition, word-level or morpheme-level models are able to generate vocabularies only which are contained in the training set. Furthermore, with highly morphological languages such as Turkish, Hungarian, Russian, Finnish or Korean, morpheme analyzers have more chance to cause errors in decomposition process (Lankinen et al., 2016). Therefore, this paper proposes a phoneme-level language model for Korean language based on LSTM models. A phoneme such as a vowel or a consonant is the smallest unit that comprises Korean texts. We construct the language model using three or four LSTM layers. Each model was trained using Stochastic Gradient Algorithm and more advanced optimization algorithms such as Adagrad, RMSprop, Adadelta, Adam, Adamax, and Nadam. Simulation study was done with Old Testament texts using a deep learning package Keras based the Theano. After pre-processing the texts, the dataset included 74 of unique characters including vowels, consonants, and punctuation marks. Then we constructed an input vector with 20 consecutive characters and an output with a following 21st character. Finally, total 1,023,411 sets of input-output vectors were included in the dataset and we divided them into training, validation, testsets with proportion 70:15:15. All the simulation were conducted on a system equipped with an Intel Xeon CPU (16 cores) and a NVIDIA GeForce GTX 1080 GPU. We compared the loss function evaluated for the validation set, the perplexity evaluated for the test set, and the time to be taken for training each model. As a result, all the optimization algorithms but the stochastic gradient algorithm showed similar validation loss and perplexity, which are clearly superior to those of the stochastic gradient algorithm. The stochastic gradient algorithm took the longest time to be trained for both 3- and 4-LSTM models. On average, the 4-LSTM layer model took 69% longer training time than the 3-LSTM layer model. However, the validation loss and perplexity were not improved significantly or became even worse for specific conditions. On the other hand, when comparing the automatically generated sentences, the 4-LSTM layer model tended to generate the sentences which are closer to the natural language than the 3-LSTM model. Although there were slight differences in the completeness of the generated sentences between the models, the sentence generation performance was quite satisfactory in any simulation conditions: they generated only legitimate Korean letters and the use of postposition and the conjugation of verbs were almost perfect in the sense of grammar. The results of this study are expected to be widely used for the processing of Korean language in the field of language processing and speech recognition, which are the basis of artificial intelligence systems.

EFFECT OF THE SOCIAL SKILL TRAINING IN ADHD CHILDREN (주의력 결핍 과잉운동장애 아동에서 사회기술훈련의 효과)

  • Park, Soon-Young;Kwack, Young-Sook;Kim, Mi-Koung
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.9 no.2
    • /
    • pp.154-164
    • /
    • 1998
  • Medication is widely accepted as an effective method to reduce the problem of attention deficit, hyperactivity, impulsivity, resistance and violence of ADHD children. However, it does not provide us with the solution on the conflicting routinized behavioral patterns to gain a high level of self-control and acceptable behavior. As a way of replacing medication, this study applies the social skills training program for ADHD children and measures the level of improvement of social skills and the change of the behavioral patterns. The experiment is carried out on 16 children ranged from 6 to 13 years of age for 10 weeks. The patients are divided into three groups:a pure ADHD group, an ADHD group with conduct disorder, an ADHD group with mental retardation and other symptoms. The change of symptoms and the change of social skills are measured by the Child Behavior Checklist(CBCL), the ADD-H Comprehensive Teacher’s Rating Scale(ACTeRS) and the Social Skills Rating Scale(SSRS), and finally Mastson Evaluation of Social Skills for Youth(MESSY). Wilcoxon signed ranks test is used to evaluate the effect of the treatment, and Kruskal-Wallis test is also used to measure the change after the treatment in each of the three groups. In the ADHD group with conduct disorder, the examination of the effect of the treatment shows a significant reduction of violence in the area of behavior(p<.05), and a significant difference of activity and social skills in the area of social competent(p<.001). In the ADHD group with mental retardation and other symptoms, a significant rise of social skills is found in the area of social skills evaluation (p<.05). However, there is no significant difference of effect by the treatment among the three groups. In addition, the current examination shows that the social skills training program does not make a statistically significant contribution to the social skills of the ADHD children. On the other hand, the training helps some children, when it is suitable for the characteristics and accompanying symptoms of the children:it reduces the level of violence in the ADHD group with conduct disorder, and it raises the social skills in the ADHD group with mental retardation. In other words, the social skills training program will reduce the conduct disorder and helps peer relation for ADHD children.

  • PDF

OBSTETRICIAN'S VIEW OF TEENAGE PREGNANCY:PRESENT STATUS, PREVENTION AND PSYCHIATRIC CONSULTATION (산과 의사가 인지한 10대 임신의 현황, 예방, 정신과 자문)

  • Kim, Eun-Young;Kim, Boong-Nyun;Hong, Kang-E;Lee, Young-Sik
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.13 no.1
    • /
    • pp.117-128
    • /
    • 2002
  • Objectives:For the purpose of obtaining the more vivid present status and prevention program of teenage pregnancy, this survey was done by Obstetricians, as study subject, who manage the pregnant teenager in real clinical situation. Methods:Structured survey form about teenage pregnancy was sent to 2,800 obstetricians. That form contained frequency, characteristics, decision making processes, and psychiatric aspects of the teenage pregnancy. 349 obstetricians replied that survey form and we analysed these datas. Results:(1) The trend of teenage pregnancy was mildly increased. (2) The most common cases were unwanted pregnancy by continuing sexual relationship with boyfriends rather than by forced, accidental sexual relationship with multiple partners. (3) The most common reason of labor was loss the time of artificial abotion. (4) Problems of pregnant girls' were conduct behaviors and poor informations about contraception rather than sexual abuse or mental retardation. (5) Most obstetricians percepted the necessity of psychiatric consultation, however psychiatric consultation was rare due to parents refusal and abscense of available psychiatric facility. (6) For the prevention of teenage pregnancy, the most important thing was practical education about contraception. Conclusions:Based on the result of this study, further study using structured interview schedule with pregnant girl is needed for the detecting risk factor of teenage pregnancy and effective systematic approach to pregnant girl.

  • PDF

THE STUDY ON RELATIONSHIP BETWEEN PSYCHOPATHOLOGY AND NEUROLOGICAL FACTORS IN CHRONIC EPILEPTIC CHILDREN (경련 질환 환아의 정신병리와 신경학적 요인과의 관계에 대한 연구)

  • Kim, Bung-Nyun;Cho, Soo-Churl;Hwang, Yong-Seung
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.7 no.1
    • /
    • pp.92-109
    • /
    • 1996
  • The objectives of the present study were to provide comprehensive assessment of the impact of epilepsy on the psychological well-being of children with epilepsy and to identify the neurological factors associated with the psychopathology. The participant patients were recruited from the population of children and adolescent aged 7 to 16 attending the OPD of department of pediatric neurology in Seoul National University Hospital in Korea. We exclude mental retardation, pervasive developmental disorder and brain organic pathology. As control group, formal students were chosen and their sex, age, achievement, socioeconomic status were matched to patients. The first author interviewed the children and their family members and obtained the developmental history and family information. We used the following 10 scales for assessing psychological and behavioral problems in patients and their family member. The scales were standardized and their validity and reliability were confirmed before. Parent rating scales : Yale children's inventory, Disruptive behavior disorder scale, Parent's attitude to epilepsy questionnaire, Family environment scale, Symptom check-list-90 revision, Children behavior check-list. Children's self rating scales : Children's depression inventory, Spielberger's state-trait anxiety anxiety, Piers-Harris self-concept inventory and Self-administered Dependency questionnaire for Mother. The result showed the risk factors associated depression were early onset, complex partial seizure, lateralized temporal focal abnormality on EEG, Drug polypharmacy, high seizure frequency and sick factors associated anxiety were old age of patient, lateralized temporal focal abnormality EEG, Drug polypharmacy, high seizure frequency. Also the result of this present study indicated that risk factors associated oppositional defiant disorder, conduct disorder and attention deficit hyperactivity disorder were young age, male, early onset, lateral temporal EEG abnormality and high seizure frequency. According to these results, common risk factors associated psychological and behavioral problems were lateralized EEG temporal abnormality, high seizure frequency in neurological factors.

  • PDF

Comparison of Deep Learning Frameworks: About Theano, Tensorflow, and Cognitive Toolkit (딥러닝 프레임워크의 비교: 티아노, 텐서플로, CNTK를 중심으로)

  • Chung, Yeojin;Ahn, SungMahn;Yang, Jiheon;Lee, Jaejoon
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.1-17
    • /
    • 2017
  • The deep learning framework is software designed to help develop deep learning models. Some of its important functions include "automatic differentiation" and "utilization of GPU". The list of popular deep learning framework includes Caffe (BVLC) and Theano (University of Montreal). And recently, Microsoft's deep learning framework, Microsoft Cognitive Toolkit, was released as open-source license, following Google's Tensorflow a year earlier. The early deep learning frameworks have been developed mainly for research at universities. Beginning with the inception of Tensorflow, however, it seems that companies such as Microsoft and Facebook have started to join the competition of framework development. Given the trend, Google and other companies are expected to continue investing in the deep learning framework to bring forward the initiative in the artificial intelligence business. From this point of view, we think it is a good time to compare some of deep learning frameworks. So we compare three deep learning frameworks which can be used as a Python library. Those are Google's Tensorflow, Microsoft's CNTK, and Theano which is sort of a predecessor of the preceding two. The most common and important function of deep learning frameworks is the ability to perform automatic differentiation. Basically all the mathematical expressions of deep learning models can be represented as computational graphs, which consist of nodes and edges. Partial derivatives on each edge of a computational graph can then be obtained. With the partial derivatives, we can let software compute differentiation of any node with respect to any variable by utilizing chain rule of Calculus. First of all, the convenience of coding is in the order of CNTK, Tensorflow, and Theano. The criterion is simply based on the lengths of the codes and the learning curve and the ease of coding are not the main concern. According to the criteria, Theano was the most difficult to implement with, and CNTK and Tensorflow were somewhat easier. With Tensorflow, we need to define weight variables and biases explicitly. The reason that CNTK and Tensorflow are easier to implement with is that those frameworks provide us with more abstraction than Theano. We, however, need to mention that low-level coding is not always bad. It gives us flexibility of coding. With the low-level coding such as in Theano, we can implement and test any new deep learning models or any new search methods that we can think of. The assessment of the execution speed of each framework is that there is not meaningful difference. According to the experiment, execution speeds of Theano and Tensorflow are very similar, although the experiment was limited to a CNN model. In the case of CNTK, the experimental environment was not maintained as the same. The code written in CNTK has to be run in PC environment without GPU where codes execute as much as 50 times slower than with GPU. But we concluded that the difference of execution speed was within the range of variation caused by the different hardware setup. In this study, we compared three types of deep learning framework: Theano, Tensorflow, and CNTK. According to Wikipedia, there are 12 available deep learning frameworks. And 15 different attributes differentiate each framework. Some of the important attributes would include interface language (Python, C ++, Java, etc.) and the availability of libraries on various deep learning models such as CNN, RNN, DBN, and etc. And if a user implements a large scale deep learning model, it will also be important to support multiple GPU or multiple servers. Also, if you are learning the deep learning model, it would also be important if there are enough examples and references.

Bankruptcy prediction using an improved bagging ensemble (개선된 배깅 앙상블을 활용한 기업부도예측)

  • Min, Sung-Hwan
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.121-139
    • /
    • 2014
  • Predicting corporate failure has been an important topic in accounting and finance. The costs associated with bankruptcy are high, so the accuracy of bankruptcy prediction is greatly important for financial institutions. Lots of researchers have dealt with the topic associated with bankruptcy prediction in the past three decades. The current research attempts to use ensemble models for improving the performance of bankruptcy prediction. Ensemble classification is to combine individually trained classifiers in order to gain more accurate prediction than individual models. Ensemble techniques are shown to be very useful for improving the generalization ability of the classifier. Bagging is the most commonly used methods for constructing ensemble classifiers. In bagging, the different training data subsets are randomly drawn with replacement from the original training dataset. Base classifiers are trained on the different bootstrap samples. Instance selection is to select critical instances while deleting and removing irrelevant and harmful instances from the original set. Instance selection and bagging are quite well known in data mining. However, few studies have dealt with the integration of instance selection and bagging. This study proposes an improved bagging ensemble based on instance selection using genetic algorithms (GA) for improving the performance of SVM. GA is an efficient optimization procedure based on the theory of natural selection and evolution. GA uses the idea of survival of the fittest by progressively accepting better solutions to the problems. GA searches by maintaining a population of solutions from which better solutions are created rather than making incremental changes to a single solution to the problem. The initial solution population is generated randomly and evolves into the next generation by genetic operators such as selection, crossover and mutation. The solutions coded by strings are evaluated by the fitness function. The proposed model consists of two phases: GA based Instance Selection and Instance based Bagging. In the first phase, GA is used to select optimal instance subset that is used as input data of bagging model. In this study, the chromosome is encoded as a form of binary string for the instance subset. In this phase, the population size was set to 100 while maximum number of generations was set to 150. We set the crossover rate and mutation rate to 0.7 and 0.1 respectively. We used the prediction accuracy of model as the fitness function of GA. SVM model is trained on training data set using the selected instance subset. The prediction accuracy of SVM model over test data set is used as fitness value in order to avoid overfitting. In the second phase, we used the optimal instance subset selected in the first phase as input data of bagging model. We used SVM model as base classifier for bagging ensemble. The majority voting scheme was used as a combining method in this study. This study applies the proposed model to the bankruptcy prediction problem using a real data set from Korean companies. The research data used in this study contains 1832 externally non-audited firms which filed for bankruptcy (916 cases) and non-bankruptcy (916 cases). Financial ratios categorized as stability, profitability, growth, activity and cash flow were investigated through literature review and basic statistical methods and we selected 8 financial ratios as the final input variables. We separated the whole data into three subsets as training, test and validation data set. In this study, we compared the proposed model with several comparative models including the simple individual SVM model, the simple bagging model and the instance selection based SVM model. The McNemar tests were used to examine whether the proposed model significantly outperforms the other models. The experimental results show that the proposed model outperforms the other models.