• Title/Summary/Keyword: 학습지능

Search Result 3,110, Processing Time 0.034 seconds

Improved Transformer Model for Multimodal Fashion Recommendation Conversation System (멀티모달 패션 추천 대화 시스템을 위한 개선된 트랜스포머 모델)

  • Park, Yeong Joon;Jo, Byeong Cheol;Lee, Kyoung Uk;Kim, Kyung Sun
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.1
    • /
    • pp.138-147
    • /
    • 2022
  • Recently, chatbots have been applied in various fields and have shown good results, and many attempts to use chatbots in shopping mall product recommendation services are being conducted on e-commerce platforms. In this paper, for a conversation system that recommends a fashion that a user wants based on conversation between the user and the system and fashion image information, a transformer model that is currently performing well in various AI fields such as natural language processing, voice recognition, and image recognition. We propose a multimodal-based improved transformer model that is improved to increase the accuracy of recommendation by using dialogue (text) and fashion (image) information together for data preprocessing and data representation. We also propose a method to improve accuracy through data improvement by analyzing the data. The proposed system has a recommendation accuracy score of 0.6563 WKT (Weighted Kendall's tau), which significantly improved the existing system's 0.3372 WKT by 0.3191 WKT or more.

A Case Study of Bootcamp Program for Software Developer (소프트웨어 개발 인재 양성을 위한 부트캠프 사례 연구)

  • Kwak, Chanhee;Lee, Junyeong
    • Journal of Practical Engineering Education
    • /
    • v.14 no.1
    • /
    • pp.11-18
    • /
    • 2022
  • As the need for software development manpower increases, various educational programs appear and the popularity of bootcamp style education program for software development increases. However, despite the operations and forms of bootcamp education programs are completely different from the existing software development education programs, there is a lack of research in understanding bootcamp as a software education program. Therefore, this study tried to derive the core elements of the education program through a case study on bootcamp software developer education program. After conducting interviews of 7 members who have completed a series of bootcamp software developer education program X, seven characteristics of bootcamp-type software development education program were derived: intensive theory education, sense of growth and achievement, team project-based learning, community characteristics, peer pressure, stress and fatigue due to short-term learning, and contact-free specialty. Based on the derived characteristics, the advantages and improvements of bootcamp-type education were described, and the direction of the bootcamp-type education program for software developer was discussed.

Quantile Co-integration Application for Maritime Business Fluctuation (분위수 공적분 모형과 해운 경기변동 분석)

  • Kim, Hyun-Sok
    • Journal of Korea Port Economic Association
    • /
    • v.38 no.2
    • /
    • pp.153-164
    • /
    • 2022
  • In this study, we estimate the quantile-regression framework of the shipping industry for the Capesize used ship, which is a typical raw material transportation from January 2000 to December 2021. This research aims two main contributions. First, we analyze the relationship between the Capesize used ship, which is a typical type in the raw material transportation market, and the freight market, for which mixed empirical analysis results are presented. Second, we present an empirical analysis model that considers the structural transformation proposed in the Hyunsok Kim and Myung-hee Chang(2020a) study in quantile-regression. In structural change investigations, the empirical results confirm that the quantile model is able to overcome the problems caused by non-stationarity in time series analysis. Then, the long-run relationship of the co-integration framework divided into long and short-run effects of exogenous variables, and this is extended to a prediction model subdivided by quantile. The results are the basis for extending the analysis based on the shipping theory to artificial intelligence and machine learning approaches.

A Study on Smart Farmer Service Using Community Mapping (커뮤니티 매핑을 활용한 스마트파머 서비스에 관한 연구)

  • Koo, Jee Hee;Lee, Seung Woo;Lee, Ga eun;Pyeon, Mu Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.419-427
    • /
    • 2021
  • Due to the effects of climate change and the reduction of the labor force due to COVID-19, the crop yield, harvest time, and cultivated area are rapidly changing every year. In order to respond flexibly to this situation, attempts to apply smart farm technology based on ICT (Information and Communication Technology) to individual farms are increasing. On the other hand, various stakeholders are trying to predict the yield of crops using artificial intelligence and IoT technology, but accurate prediction is difficult due to the lack of learning data. In this study, in order to overcome the data collection problem limited to a specific institution, a smart farmer service technology based on community mapping was developed in which farmers directly participate, input and share accurate data to predict production. In the process, analysis was performed on napa cabbage, which is a vegetable with a large price change compared to production.

An Analysis of Educational Capacity Prediction according to Pre-survey of Satisfaction using Random Forest (랜덤 포레스트를 활용한 만족도 사전조사에 따른 교육 역량 예측 분석)

  • Nam, Kihun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.487-492
    • /
    • 2022
  • Universities are looking for various methods to enhance educational competence level suitable for the rapidly changing social environment. This study suggests a method to promote academic and educational achievements by reducing drop-out rate from their majors through implementation of pre-survey of satisfaction that revised and complemented survey items. To supplement the CQI method implemented after a general satisfaction survey, a pre-survey of satisfaction was carried out. To consolidate students' competences, this study made prediction and analysis of data with more importance possible using the Random Forest of the machine learning technique that can be applied to AI Medici platform, whose design is underway. By pre-processing the pre-survey of satisfaction, the students information enrolled in classes were defined as an explanatory variable, and they were classified, and a model was created and learning was conducted. For the experimental environment, the algorithms and sklearn library related in Jupyter notebook 3.7.7, Python 3.7 were used together. This study carried out a comparative analysis of change in educational satisfaction survey, carried out after classes, and trends in the drop-out students by reflecting the results of the suggested method in the classes.

Comparison of Anomaly Detection Performance Based on GRU Model Applying Various Data Preprocessing Techniques and Data Oversampling (다양한 데이터 전처리 기법과 데이터 오버샘플링을 적용한 GRU 모델 기반 이상 탐지 성능 비교)

  • Yoo, Seung-Tae;Kim, Kangseok
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.2
    • /
    • pp.201-211
    • /
    • 2022
  • According to the recent change in the cybersecurity paradigm, research on anomaly detection methods using machine learning and deep learning techniques, which are AI implementation technologies, is increasing. In this study, a comparative study on data preprocessing techniques that can improve the anomaly detection performance of a GRU (Gated Recurrent Unit) neural network-based intrusion detection model using NGIDS-DS (Next Generation IDS Dataset), an open dataset, was conducted. In addition, in order to solve the class imbalance problem according to the ratio of normal data and attack data, the detection performance according to the oversampling ratio was compared and analyzed using the oversampling technique applied with DCGAN (Deep Convolutional Generative Adversarial Networks). As a result of the experiment, the method preprocessed using the Doc2Vec algorithm for system call feature and process execution path feature showed good performance, and in the case of oversampling performance, when DCGAN was used, improved detection performance was shown.

Operating Voltage Prediction in Mobile Semiconductor Manufacturing Process Using Machine Learning (기계학습을 활용한 모바일 반도체 제조 공정에서 동작 전압 예측)

  • Inhwan Baek;Seungwoo Jang;Kwangsu Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.124-128
    • /
    • 2023
  • Semiconductor engineers have long sought to enhance the energy efficiency of mobile semiconductors by reducing their voltage. During the final stages of the semiconductor manufacturing process, the screening and evaluation of voltage is crucial. However, determining the optimal test start voltage presents a significant challenge as it can increase testing time. In the semiconductor manufacturing process, a wealth of test element group information is collected. If this information can be controlled to predict the test voltage, it could lead to a reduction in testing time and increase the probability of identifying the optimal voltage. To achieve this, this paper is exploring machine learning techniques, such as linear regression and ensemble models, that can leverage large amounts of information for voltage prediction. The outcomes of these machine learning methods not only demonstrate high consistency but can also be used for feature engineering to enhance accuracy in future processes.

  • PDF

Accurate prediction of lane speeds by using neural network

  • Dong hyun Pyun;Changwoo Pyo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.5
    • /
    • pp.9-15
    • /
    • 2023
  • In this paper, we propose a method predicting the speed of each lane from the link speed using a neural network. We took three measures for configuring learning data to increase prediction accuracy. The first one is to expand the spatial range of the data source by including 14 links connected to the beginning and end points of the link. We also increased the time interval from 07:00 to 22:00 and included the data generation time in the feature data. Finally, we marked weekdays and holidays. Results of experiments showed that the speed error was reduced by 21.9% from 6.4 km/h to 5.0 km/h for straight lane, by 12.9% from 8.5 km/h to 7.4 km/h for right turns, and by 5.7% from 8.7 km/h to 8.2 km/h for left-turns. As a secondary result, we confirmed that the prediction accuracy of each lane was high for city roads when the traffic flow was congested. The feature of the proposed method is that it predicts traffic conditions for each lane improving the accuracy of prediction.

Prepare a plan to utilize data collected through field demonstration of multi-sensing devices to improve urban flood monitoring (도심지 홍수 모니터링 향상을 위한 멀티센싱 기기의 현장실증을 통해 수집된 데이터의 활용방안 마련)

  • Seung Kwon Jung;Soung Jong Yoo;Su Won Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.19-19
    • /
    • 2023
  • 최근 기후변화에 의해 단기간에 많은 양의 집중호우가 발생하여 도시지역의 침수 피해가 증가하고 있다. 이에 도시지역의 홍수 피해 해결을 위해 도심지 홍수 발생 시 홍수정도 및 상황을 파악할 수 있는 장비가 개발되었으나, 실용화 단계까지는 진행이 미흡한 상황이다. 또한 기존 도시지역 홍수 현상 및 원인을 분석하기 위해 수치모형을 활용하고 있으나, 우수관망의 노후화 및 초기 강우패턴 적용에 대한 정확한 해석결과의 어려워 활용성이 낮다. 또한 홍수정도와 발생상황 인지를 위한 계측 장비의 개발 연구는 지속적으로 진행되고 있으나, 계측 장비의 높은 가격으로 전국적으로 설치 할 수 없는 상황으로 이를 대응하기 위한 별도의 방안 마련이 필요한 실정이다. 이를 위해 본 과제에서는 고성능·저비용 계측센서를 개발하여 실용화 가능성을 높이고, 전국에 산재되어있는 CCTV(교통상황, 방법용 등)의 영상을 활용한 침수상황 인지 기술 개발, 계측 데이터와 모니터링 데이터의 활용을 위한 빅데이터 개방 플랫폼을 구축하여, 상습 침수지역에 대해 실시간 감시가 가능한 계측 시스템의 정형 데이터와 CCTV 및 영상 등 모니터링 장비의 비정형 데이터의 분석 기술을 결합한 새로운 도심지 홍수 감시 기술의 개발을 목표로 한다. 이를 위해 본 연구 1차년도에 지표면 침수심 계측센서와 우수관망 월류심 계측센서를 개발하였으며, 2차년도에는개발된 계측센서의 현장실증을 통해 데이터를 수집한다. 수집된 계측센서 데이터와 비정형(CCTV 영상) 데이터의 AI학습을 통해 분석된 침수심, 침수범위, 침수면적 데이터는 도심지 홍수 정보 프로그램을 통해 표출되며, 최종적으로는 현장 상황을 쉽게 파악 가능한 3D 레이어의 형식으로 표출하고자 한다. 추후 도심지 홍수 정보 프로그램을 통해 표출되는 3D 레이어는 환경부가 추진하는 DT(Digital Twin) 연계 인공지능(AI) 홍수예보 사업과의 연계 시 도심지 홍수 지도 구축을 위한 자료로 활용될 수 있을 것으로 판단된다.

  • PDF

Detection of Smoking Behavior in Images Using Deep Learning Technology (딥러닝 기술을 이용한 영상에서 흡연행위 검출)

  • Dong Jun Kim;Yu Jin Choi;Kyung Min Park;Ji Hyun Park;Jae-Moon Lee;Kitae Hwang;In Hwan Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.107-113
    • /
    • 2023
  • This paper proposes a method for detecting smoking behavior in images using artificial intelligence technology. Since smoking is not a static phenomenon but an action, the object detection technology was combined with the posture estimation technology that can detect the action. A smoker detection learning model was developed to detect smokers in images, and the characteristics of smoking behaviors were applied to posture estimation technology to detect smoking behaviors in images. YOLOv8 was used for object detection, and OpenPose was used for posture estimation. In addition, when smokers and non-smokers are included in the image, a method of separating only people was applied. The proposed method was implemented using Google Colab NVIDEA Tesla T4 GPU in Python, and it was found that the smoking behavior was perfectly detected in the given video as a result of the test.