• Title/Summary/Keyword: 학습지능

Search Result 3,110, Processing Time 0.028 seconds

Personality Learning Techniques for Intelligent Information System (지능형 정보시스템을 위한 개인성 학습 기법)

  • 김호준;박정선
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.310-312
    • /
    • 2001
  • 본 연구에서는 정보시스템의 지능형 인터페이스를 위하여 사용자의 개인성을 학습하는 방법론으로서 신경망 이론의 활용가능성을 고찰한다. 입력형식의 유연성, 입력의 왜곡 및 소실가능성 등 시스템의 실용성과 연관하여 나타나는 자료의 특성을 수용하기 위하여, 학습과정에서 신호표현의 다양화와 부분 패턴의 의한 분류 기능 등을 개선한 신경망모델을 제안한다. 이를 위하여 퍼지 양방향 연상기억장치와 구간연산으로 일반화된 다층 신경망모델을 결합하여 혼합형 분류모형을 제시하고 그 유용성을 고찰한다. 실험은 전공분야 선택을 위한 개인의 적성분석시스템을 대상으로 구현하였다.

  • PDF

Nonlinear channel equalization using GDRNN (GDRNN을 이용한 비선형 채널 등화)

  • 김용운;박동조
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.263-266
    • /
    • 1998
  • 이 논문에서는 비선형 Channel의 등화기를 설계하기 위해 새로운 구조를 갖는 신경회로망을 제안하였다. 비선형 Channel의 동적 특성을 제대로 학습하기 위해 새로운 신경회로망은 은닉층 노드의 출력이 은닉층의 입력으로 되먹임되는 구조를 갖는다. 또한 이 논문에서는 제안한 신경회로망의 구조에 알맞는 학습 알고리즘을 제안하였다. 제안한 신경회로망과 학습 알고리즘의 성능은 Computer simulation을 통해 보였고, 그 결과는 기존의 Channel 등화기를 사용했을 경우보다 나은 결과를 보여 주었다.

  • PDF

Pattern Recognition Using BP Learning Algorithm of Multiple Valued Logic Neural Network (다치 신경 망의 BP 학습 알고리즘을 이용한 패턴 인식)

  • 김두완;정환묵
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.502-505
    • /
    • 2002
  • 본 논문은 다치(MVL:Multiple Valued Logic) 신경망의 BP(Backpropagation) 학습 알고리즘을 이용하여 패턴 인식에 이용하는 방법을 제안한다. MVL 신경망을 이용하여 패턴 인식에 이용함으로서, 네트워크에 필요한 시간 및 기억 공간을 최소화할 수 있고 환경 변화에 적응할 수 있는 가능성을 제시하였다. MVL 신경망은 다치 논리 함수를 기반으로 신경망을 구성하였으며, 입력은 리터럴 함수로 변환시키고, 출력은 MIN과 MAX 연산을 사용하여 구하였고, 학습을 하기 위해 다치 논리식의 편 미분을 사용하였다.

Intelligent Recommendation Agent Based on Ontology (온톨로지 기반의 지능형 추천 에이전트)

  • 조범수;김재원;노상욱
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.106-108
    • /
    • 2003
  • 최근 들어 인터넷의 급속한 발전으로 사용자가 처리해야할 점보의 양이 급속히 늘어나게 됨으로써 사람이 혼자만의 힘으로 이 많은 정보를 처리하는 것이 하나의 고단한 작업이 되었고, 이 작업을 돕기 위한 소프트웨어 에이전트(software agent) 의 필요성이 대두되었다. 본 논문에서는 구현한 소프트웨어 에이전트가 사용자의 업무보조 (personal assistant) 라는 자신의 임무를 수행하기 위하여 온톨로지(ontology)를 기반으로 사용자의 선호도(preference) 와 의사결정 패턴을 학습하여 사용자 프로파일(user Profile) 을 작성한다. 학습한 프로파일을 바탕으로 사용자의 선호도와 일치하는 제품을 추천하는 지능형 에이전트를 제안하고. 실질적인 실험을 통해 학습된 사용자의 성향을 분석한다.

  • PDF

기계학습 기법을 이용한 해상교통관제 시점에 관한 기초 연구

  • Park, Sang-Won;Lee, Myeong-Gi;Park, Yeong-Su
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.05a
    • /
    • pp.87-88
    • /
    • 2019
  • 자율운항선박 개념이 등장함에 따라 이를 관제하는 해상교통관제에도 선박 변화에 따른 대응이 필요하다. 본 연구의 목적은 인공지능의 한 분야인 기계학습을 통해 해상교통관제사가 교통 관리를 위해 선박에게 교신을 시작하는 시점을 일반화하는 것이다. 이를 위해 부산 북항의 7일간 교신 시작 시점 데이터를 이용해 알고리즘을 개발했다.

  • PDF

이미지 기반 적대적 사례 생성 기술 연구 동향

  • O, Hui-Seok
    • Review of KIISC
    • /
    • v.30 no.6
    • /
    • pp.107-115
    • /
    • 2020
  • 다양한 응용분야에서 심층신경망 기반의 학습 모델이 앞 다투어 이용됨에 따라 인공지능의 설명 가능한 동작 원리 해석과, 추론이 갖는 불확실성에 관한 분석 또한 심도 있게 연구되고 있다. 이에 심층신경망 기반 기계학습 모델의 취약성이 수면 위로 드러났으며, 이러한 취약성을 이용하여 악의적으로 모델을 공격함으로써 오동작을 유도하고자 하는 시도가 다방면으로 이루어짐에 의해 학습 모델의 강건함 보장은 보안 분야에서의 쟁점으로 부각되고 있다. 모델 추론의 입력으로 이용되는 이미지에 교란값을 추가함으로써 심층신경망의 오분류를 발생시키는 임의의 변형된 이미지를 적대적 사례라 정의하며, 본 논문에서는 최근 인공지능 및 컴퓨터비전 분야에서 이루어지고 있는 이미지 기반 적대적 사례의 생성 기법에 대하여 논한다.

The Effects of Artificial Intelligence Convergence Education using Machine Learning Platform on STEAM Literacy and Learning Flow

  • Min, Seol-Ah;Jeon, In-Seong;Song, Ki-Sang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.10
    • /
    • pp.199-208
    • /
    • 2021
  • In this paper, the effect of artificial intelligence convergence education program that provides STEAM education using machine learning platform on elementary school students' STEAM literacy and learning flow was analyzed. A homogeneous group of 44 elementary school 6th graders was divided into an experimental group and a control group. The control group received 10 lessons of general subject convergence class, and the experimental group received 10 lessons of STEAM-based artificial intelligence convergence education using Machine learning for Kids. To develop the artificial intelligence convergence education program, the goals, achievement standards, and content elements of the 2015 revised curriculum to select subjects and class contents is analyzed. As a result of the STEAM literacy test and the learning flow test, there was a significant difference between the experimental group and the control group. In particular, it can be confirmed that the coding environment in which the artificial intelligence function is expanded has a positive effect on learners' learning flow and STEAM literacy. Among the sub-elements of convergence talent literacy, significant differences were found in the areas of personal competence such as convergence and creativity. Among the sub-elements of learning flow, significant differences were found in the areas such as harmony of challenge and ability, clear goals, focus on tasks, and self-purposed experiences. If further expanded research is conducted in the future, it will be a basic research for more effective education for the future.

A Study on Development Strategies for Artificial Intelligence-Based Personalized Mathematics Learning Services (인공지능 기반 개인 맞춤 수학학습 서비스 개발 방향에 관한 연구)

  • Joo-eun Hyun;Chi-geun Lee;Daehwan Lee;Youngseok Lee;Dukhoi Koo
    • Journal of Practical Engineering Education
    • /
    • v.15 no.3
    • /
    • pp.605-614
    • /
    • 2023
  • In In the era of digital transition, AI-based personalized services are emerging in the field of education. This research aims to examine the development strategies for implementing AI-based learning services in school. Focusing on AI-based math learning service "Math Cell" developed by i-Scream Edu, this study surveyed the functional requirements from the perspective of an educator. The results were analyzed for importance and suitability using IPA, and expert opinions were surveyed to explore specific development directions for the service. Consequently, importance in all areas such as diagnosis, learning, evaluation, and management averaged 4.82 and performance averaged 4.56, showing excellent results in most questions, and in particular, importance was higher than performance. Among certain detailed functions, concept learning, customized task presentation, evaluation result analysis function, dashboard-related functions, and learning materials in the dashboard were not intuitive for students to understand and had to be supplemented. This study provides meaningful insights by summarizing expert opinions on AI-based personalized mathematics learning services, thereby contributing to the exploration of the development strategies for "Math Cell".

A Study on the Data Collection and Analysis System for Learning Experiences in Learner-Centered Customized Education (학습자 중심의 맞춤형 교육을 위한 학습 경험 데이터 수집 및 분석 체계 연구)

  • Sang-woo Kim;Myung-suk Lee
    • Journal of Practical Engineering Education
    • /
    • v.16 no.2
    • /
    • pp.159-165
    • /
    • 2024
  • This study investigates the comprehensive system for collecting intelligent learning activity data tailored to learner-centered personalized education. We compared and analyzed the characteristics of xAPI, Caliper analytics, and cmi5, which are learning activity data collection standards, and established a system that allows not only standardized data but also non-standardized learning activity data to be stored as big data for artificial intelligence learning analysis. As a result, the system was structured into five stages: defining data types, standardizing learning data using xAPI, storing big data, conducting learning analysis (statistical and AI-based), and providing learner-tailored services. The aim was to establish a foundation for analyzing learning data using artificial intelligence technology. In future research, we will divide the entire system into three stages, implement and execute it, and correct and supplement any shortcomings in the design.

Design and Implementation of Web Compiler for Learning of Artificial Intelligence (인공지능 학습을 위한 웹 컴파일러 설계 및 구현)

  • Park, Jin-tae;Kim, Hyun-gook;Moon, Il-young
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.674-679
    • /
    • 2017
  • As the importance of the 4th industrial revolution and ICT technology increased, it became a software centered society. Existing software training was limited to the composition of the learning environment, and a lot of costs were incurred early. In order to solve these problems, a learning method using a web compiler was developed. The web compiler supports various software languages and shows compilation results to the user via the web. However, Web compilers that support artificial intelligence technology are missing. In this paper, we designed and implemented a tensor flow based web compiler, Google's artificial intelligence library. We implemented a system for learning artificial intelligence by building a meteorJS based web server, implementing tensor flow and tensor flow serving, Python Jupyter on a nodeJS based server. It is expected that it can be utilized as a tool for learning artificial intelligence in software centered society.