• 제목/요약/키워드: 학습지능

검색결과 3,110건 처리시간 0.03초

An automated neural network design from a well organized data set (정제된 데이터를 이용한 신경망의 설계 자동화에 관한 연구)

  • 백주현;김홍기
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 한국퍼지및지능시스템학회 1998년도 춘계학술대회 학술발표 논문집
    • /
    • pp.53-56
    • /
    • 1998
  • 본 논문에서의 공학적인 체계성을 갖고 초기 연결 가중치 및 임계치를 결정해 주면서, 학습까지 가능한 신경망을 제안한다. 기존의 오류 역전파 신경망을 적용할 때 경험에 의하여 은닉층 노드수를 결정하거나 임의의 실수 값으로 초기 연결 가중치 및 임계값을 주었을 때 자주 발생하는 학습 마비 현상을 피할 수 있고, Bose가 제안된 Voronoi 공간 분류에 의한 신경망 구성에서 학습이 불가능하다는 제안적인 단점을 보안하였다. 초기 가중치는 Voronoi 공간 분류가 이루어져 있다고 할 때 Bose가 제안한 초기 가중치 결정법을 개선하여 사용하고, Bose의 경우 신경망 노드가 Step function을 이용하여 정보를 전달하였으나 본 연구에서는 학습이 가능한 함수인 Sigmoid function을 이용하였다. 제안된 새로운 신경망의 성능 및 효율성을 비교하기 위하여 선형분리가 불가능한 XOR문제를 실험한 결과, 기존의 학습 가능한 EBP에서 허용오차 0.05 수준일 때 80%정도 학습마비 현상이 발생하였던 심각한 문제점을 보완할 수 있었고, 또한 학습 속도면에서 8~9배 정도 빠른 성능을 나타내었다.

  • PDF

Solving POMDP problem using Self-organizing state RL (상태 조직화 강화학습을 사용한 POMDP 문제 해결)

  • 이승준;장병탁
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 한국퍼지및지능시스템학회 2001년도 춘계학술대회 학술발표 논문집
    • /
    • pp.73-77
    • /
    • 2001
  • 본 논문에서는 부분적으로 관측 가능한 환경에서 사전의 모델 정보 없이 확률적인 행동 정책을 학습하는 상태 조직화 강화 학습 모델을 제안한다. 기존의 강화학습은 환경 모델을 사전에 필요로 하고 상태 전체의 관측이 필요하기 때문에 학습 이전에 문제에 대해 알아야 한다는 제약이 있다. 또한 작은 문제에 대해서는 잘 적용되지만 상태의 수가 매우 많고 부분적으로만 관측한 경우가 많은 실제 문제에는 그대로 적용하기가 불가능하다. 이러한 두 가지 단점을 해결하기 위해 본 논문에서는 사전의 모델 정보 없이 부분적인 관측값으로부터 상태와 행동 정책을 동시에 학습해 나가는 강화 학습 모델을 제안하고, 제안된 방법을 부분적으로만 관측이 가능한 미로 탐색 문제에 적용하였다.

  • PDF

A Study on the Properness Constraint on Iterative Learning Controllers (반복 학습 제어기의 properness 제한에 관한 연구)

  • Moon, Jung-Ho;Doh, Tae-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • 제12권5호
    • /
    • pp.393-396
    • /
    • 2002
  • This note investigates the necessity of properness constraint on iterative learning controllers from the viewpoint of the initial condition problem. It is shown that unless the iterative learning controller is proper, the teaming control input may grow unboundedly and thus not be feasible in practice, though the convergence of tracking error is theoretically guaranteed. In addition, this note analyzes the effects of initial condition misalignment in the iterative learning control system on the control input and convergence property.

An Artificial Neural Network for Efficiently Learning and Representation the Advection and Remove of Fire-Flake Particles (불똥 입자의 이류과 삭제를 효율적으로 학습 표현하는 인공신경망)

  • Kim, Donghui;Kim, Jong-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 한국컴퓨터정보학회 2022년도 제65차 동계학술대회논문집 30권1호
    • /
    • pp.345-348
    • /
    • 2022
  • 본 논문에서는 유체 시뮬레이션(Fluid simulation)중 화염에서 표현되는 불똥 입자(Fire-flake particle)의 생성, 움직임과 삭제를 효율적으로 학습하고 표현할 수 있는 인공지능 기법에 대해 소개한다. 유체 시뮬레이션을 계산하기 위해서는 일반적으로 수치해석학과 같은 학문의 이해가 필요하며 불똥이나 거품과 같은 유체의 2차 효과(Secondary effect)는 기반유체(Underlying fluids)를 통해 추출되기 때문에 복잡하고 계산양이 많아진다. 이러한 문제를 완화하고자 본 논문에서는 인공신경망을 이용한 분류 모델 학습을 통해 격자 내에서 표현되어야 하는 불똥 입자의 생성을 학습하고, 다항 회귀 모델 학습을 통해 불똥 입자의 움직임을 예측한다. 또한, 불똥 입자가 삭제되어야하는 상태를 네트워크 학습을 통해 얻어내며, 수명(Lifespan) 임계값 조절하여 다양한 장면에서 불똥을 제어할 수 있다. 결과적으로 화염의 움직임을 기반으로 불똥의 움직임을 복잡한 수학식이나 디자이너에게 의존하지 않고 인공지능 학습을 통해 쉽게 제어하고 예측하는 결과를 보여준다.

  • PDF

The Detection of Online Manipulated Reviews Using Machine Learning and GPT-3 (기계학습과 GPT3를 시용한 조작된 리뷰의 탐지)

  • Chernyaeva, Olga;Hong, Taeho
    • Journal of Intelligence and Information Systems
    • /
    • 제28권4호
    • /
    • pp.347-364
    • /
    • 2022
  • Fraudulent companies or sellers strategically manipulate reviews to influence customers' purchase decisions; therefore, the reliability of reviews has become crucial for customer decision-making. Since customers increasingly rely on online reviews to search for more detailed information about products or services before purchasing, many researchers focus on detecting manipulated reviews. However, the main problem in detecting manipulated reviews is the difficulties with obtaining data with manipulated reviews to utilize machine learning techniques with sufficient data. Also, the number of manipulated reviews is insufficient compared with the number of non-manipulated reviews, so the class imbalance problem occurs. The class with fewer examples is under-represented and can hamper a model's accuracy, so machine learning methods suffer from the class imbalance problem and solving the class imbalance problem is important to build an accurate model for detecting manipulated reviews. Thus, we propose an OpenAI-based reviews generation model to solve the manipulated reviews imbalance problem, thereby enhancing the accuracy of manipulated reviews detection. In this research, we applied the novel autoregressive language model - GPT-3 to generate reviews based on manipulated reviews. Moreover, we found that applying GPT-3 model for oversampling manipulated reviews can recover a satisfactory portion of performance losses and shows better performance in classification (logit, decision tree, neural networks) than traditional oversampling models such as random oversampling and SMOTE.

Fruit price prediction study using artificial intelligence (인공지능을 이용한 과일 가격 예측 모델 연구)

  • Im, Jin-mo;Kim, Weol-Youg;Byoun, Woo-Jin;Shin, Seung-Jung
    • The Journal of the Convergence on Culture Technology
    • /
    • 제4권2호
    • /
    • pp.197-204
    • /
    • 2018
  • One of the hottest issues in our 21st century is AI. Just as the automation of manual labor has been achieved through the Industrial Revolution in the agricultural society, the intelligence information society has come through the SW Revolution in the information society. With the advent of Google 'Alpha Go', the computer has learned and predicted its own machine learning, and now the time has come for the computer to surpass the human, even to the world of Baduk, in other words, the computer. Machine learning ML (machine learning) is a field of artificial intelligence. Machine learning ML (machine learning) is a field of artificial intelligence, which means that AI technology is developed to allow the computer to learn by itself. The time has come when computers are beyond human beings. Many companies use machine learning, for example, to keep learning images on Facebook, and then telling them who they are. We also used a neural network to build an efficient energy usage model for Google's data center optimization. As another example, Microsoft's real-time interpretation model is a more sophisticated translation model as the language-related input data increases through translation learning. As machine learning has been increasingly used in many fields, we have to jump into the AI industry to move forward in our 21st century society.

An analysis of learning performance changes in spiking neural networks(SNN) (Spiking Neural Networks(SNN) 구조에서 뉴런의 개수와 학습량에 따른 학습 성능 변화 분석)

  • Kim, Yongjoo;Kim, Taeho
    • The Journal of the Convergence on Culture Technology
    • /
    • 제6권3호
    • /
    • pp.463-468
    • /
    • 2020
  • Artificial intelligence researches are being applied and developed in various fields. In this paper, we build a neural network by using the method of implementing artificial intelligence in the form of spiking natural networks (SNN), the next-generation of artificial intelligence research, and analyze how the number of neurons in that neural networks affect the performance of the neural networks. We also analyze how the performance of neural networks changes while increasing the amount of neural network learning. The findings will help optimize SNN-based neural networks used in each field.

A Study on Tower Modeling for Artificial Intelligence Training in Artifact Restoration

  • Byong-Kwon Lee;Young-Chae Park
    • Journal of the Korea Society of Computer and Information
    • /
    • 제28권9호
    • /
    • pp.27-34
    • /
    • 2023
  • This paper studied the 3D modeling process for the restoration of the 'Three-story Stone Pagoda of Bulguksa Temple in Gyeongju', a stone pagoda from the Unified Silla Period, using artificial intelligence (AI). Existing 3D modeling methods generate numerous verts and faces, which takes a considerable amount of time for AI learning. Accordingly, a method of performing more efficient 3D modeling by lowering the number of verts and faces is required. To this end, in this study, the structure of the stone pagoda was deeply analyzed and a modeling method optimized for AI learning was studied. In addition, it is meaningful to propose a new 3D modeling methodology for the restoration of stone pagodas in Korea and to secure a data set necessary for artificial intelligence learning.

Artificial intelligence application UX/UI study for language learning of children with articulation disorder (조음장애 아동의 언어학습을 위한 인공지능 애플리케이션 UX/UI 연구)

  • Yang, Eun-mi;Park, Dea-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.174-176
    • /
    • 2022
  • In this paper, we present a mobile application for 'personalized customized learning' for children with articulation disorders using an artificial intelligence (AI) algorithm. A dataset (Data Set) to analyze, judge, and predict the learner's articulation situation and degree. In particular, we designed a prototype model by looking at how AI can be improved and advanced compared to existing applications from the UX/UI (GUI) aspect. So far, the focus has been on visual experience, but now it is an important time to process data and provide a UX/UI (GUI) experience to users. The UX/UI (GUI) of the proposed mobile application was to be provided according to the learner's articulation level and situation by using CRNN (Convolution Recurrent Neural Network) of DeepLearning and Auto Encoder GPT-3 (Generative Pretrained Transformer). The use of artificial intelligence algorithms will provide a learning environment with a high degree of perfection to children with articulation disorders, thereby enhancing the learning effect. I hope that you do not have any fear or discomfort in conversation by improving the perfection of articulation with 'personalized and customized learning'.

  • PDF

Construction of Medical Image-Based Learning Data Support Platform for Machine Learning and Its Application of Sarcopenia Data AI (머신러닝을 위한 의료영상기반 학습 데이터 지원 플랫폼 구축 및 근감소증 데이터 AI 응용)

  • Kim, Ji-Eon;Lim, Dong Wook;Yu, Yeong Ju;Noh, Si-Hyeong;Lee, ChungSub;Kim, Tae-Hoon;Jeong, Chang-Won
    • Annual Conference of KIPS
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.434-436
    • /
    • 2021
  • 의료산업은 진단 및 치료 위주의 기술개발이 진행되어왔다. 최근 의료 빅데이터를 기반으로 진단, 치료 및 재활뿐만 아니라 예방과 예후관리까지 지원하는 의료서비스에 대한 패러다임이 변화되고 있다. 특히, 여러 의료 중심의 플랫폼 기술 가운데 객관적인 진단지표를 가지고 있는 의료영상을 기반으로 인공지능 학습에 적용하여 진단 및 예측을 중심으로 한 플랫폼 개발이 진행되고 있다. 하지만, 인공지능 연구에는 많은 학습 데이터가 요구될 뿐만 아니라 학습에 적용하기 위해서는 데이터 특성에 따른 전처리 기술과 분류 작업에 많은 시간 소요되어 이와 같은 문제점을 해결할 수 있는 방법들이 요구되고 있다. 따라서, 본 논문은 인공지능 학습까지 적용하기 위한 의료영상 데이터에 대한 확장 모델을 개발하여 공통적인 조건에 따라 의료영상 데이터가 표준화되어 변환하며, 자동화 시스템 구조에 따라 데이터가 분류·저장되어 인공지능 학습까지 지원할 수 있는 플랫폼을 제안하고자 한다. 그리고 근감소증 학습데이터 관리 및 적용 결과를 통해 플랫폼의 수행성을 검증하였다. 향후 제안한 플랫폼을 통해 의료데이터에 대한 전처리, 분류, 관리까지 지원함으로써 CDM 확장 표준 의료데이터 플랫폼으로 활용 가능성을 보였다.