• Title/Summary/Keyword: 학습지능

Search Result 3,110, Processing Time 0.033 seconds

Classification of Program Information Genre for Intelligent Personalized EPG (지능형 개인화 EPG를 위한 프로그램 정보 장르 분류)

  • Song, Jin-Seok
    • Annual Conference of KIPS
    • /
    • 2007.05a
    • /
    • pp.435-438
    • /
    • 2007
  • 국내에서 디지털 방송 상용화에 성공하고 전송 모델 또한 다양화됨에 따라 사용자는 다양한 형식으로 다수의 방송 프로그램을 접할 수 있게 되었다. 이에 대한 효율적인 프로그램 관리를 위한 EPG(Electronic Program Guide) 서비스가 현재 제공되거나 개발 중이다. 지능형 개인화 EPG는 디지털 방송 스트림이 수신되는 환경에서 사용자와 방송 수신기의 지능적인 매개체로서 운영되며 본 연구는 기존 프로그램 정보에 대한 장르를 학습하고 새로운 프로그램 정보가 입력될 경우 올바르게 장르를 분류할 수 있도록 기계학습 기법이 사용되었다.

Build reinforcement learning AI process for cooperative play with users (사용자와의 협력 플레이를 위한 강화학습 인공지능 프로세스 구축)

  • Jung, Won-Joe
    • Journal of Korea Game Society
    • /
    • v.20 no.1
    • /
    • pp.57-66
    • /
    • 2020
  • The goal is to implement AI using reinforcement learning, which replaces the less favored Supporter in MOBA games. ML_Agent implements game rules, environment, observation information, rewards, and punishment. The experiment was divided into P and C group. Experiments were conducted to compare the cumulative compensation values and the number of deaths to draw conclusions. In group C, the mean cumulative compensation value was 3.3 higher than that in group P, and the total mean number of deaths was 3.15 lower. performed cooperative play to minimize death and maximize rewards was confirmed.

Implementation of a data collection system for big data analysis and learning based on infant body temperature data (영유아 체온 데이터 기반 빅데이터 분석 및 학습을 위한 데이터 수집 시스템 구현)

  • Lee, Hyoun-Sup;Heo, Gyeongyong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.577-578
    • /
    • 2021
  • Recently, artificial intelligence systems are being used in various fields. The accuracy of the decision algorithm of artificial intelligence is greatly affected by the amount of learning and the accuracy of the learning data. In the case of the amount of learning, a large amount of data is required because it has a decisive effect on the performance of AI. In this paper, we propose a data collection system for constructing a system that analyzes future conditions and changes in infants' conditions based on the body temperature data of infants and toddlers. The proposed system is a system that collects and transmits data, and it is believed that it can minimize the resource consumption of the server system in existing big data analysis and training data construction.

  • PDF

Research on Federated Learning with Differential Privacy (차분 프라이버시를 적용한 연합학습 연구)

  • Jueun Lee;YoungSeo Kim;SuBin Lee;Ho Bae
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.749-752
    • /
    • 2024
  • 연합학습은 클라이언트가 중앙 서버에 원본 데이터를 주지 않고도 학습할 수 있도록 설계된 분산된 머신러닝 방법이다. 그러나 클라이언트와 중앙 서버 사이에 모델 업데이트 정보를 공유한다는 점에서 여전히 추론 공격(Inference Attack)과 오염 공격(Poisoning Attack)의 위험에 노출되어 있다. 이러한 공격을 방어하기 위해 연합학습에 차분프라이버시(Differential Privacy)를 적용하는 방안이 연구되고 있다. 차분 프라이버시는 데이터에 노이즈를 추가하여 민감한 정보를 보호하면서도 유의미한 통계적 정보 쿼리는 공유할 수 있도록 하는 기법으로, 노이즈를 추가하는 위치에 따라 전역적 차분프라이버시(Global Differential Privacy)와 국소적 차분 프라이버시(Local Differential Privacy)로 나뉜다. 이에 본 논문에서는 차분 프라이버시를 적용한 연합학습의 최신 연구 동향을 전역적 차분 프라이버시를 적용한 방향과 국소적 차분 프라이버시를 적용한 방향으로 나누어 검토한다. 또한 이를 세분화하여 차분 프라이버시를 발전시킨 방식인 적응형 차분 프라이버시(Adaptive Differential Privacy)와 개인화된 차분 프라이버시(Personalized Differential Privacy)를 응용하여 연합학습에 적용한 방식들에 대하여 특징과 장점 및 한계점을 분석하고 향후 연구방향을 제안한다.

An Intelligent Robot Vision Framework (지능형 로봇 비전 프레임워크: VisionNEO)

  • Jang, Se-In;Park, Choong-Shik;Woo, Young-Woon;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.429-432
    • /
    • 2009
  • 오늘날 지능형 로봇은 국, 내외로 많은 관심을 받고 있는 분야이다. 지능형 로봇이란 외부환경을 인식하고 스스로 판단하여 자율적으로 동작을 하는 로봇을 의미한다. 이에 대한 연구 개발이 활성화 됨에 따라 로봇 소프트웨어 개발을 효과적으로 지원하기위한 로봇 소프트웨어 플랫폼에 대한 연구가 활발해지고 있다. 시시각각 변화하는 환경에서 민감하게 반응하기 위해서는 시각센서를 이용하여야 하고, 자신의 행위를 적절히 대응시키기 위해서는 주변 상황과 알맞은 행동을 추론하고 학습해야 한다. 본 연구에서는 인공지능 규칙처리 추론엔진을 토대로 한 NEO 시스템에 영상 처리 시스템을 올려 지능형 로봇을 제어하는 루틴을 추가한 VisionNEO를 개발하였다. 그리하여 주변 환경을 이해하고 알맞은 행동을 추론, 학습해 지식을 축적하는 지능형 로봇 비전 프레임워크를 제안한다.

  • PDF

A Pilot Study on the Generation of Legal Document Sentence based on Generative Pre-trained Transformer (생성적 사전학습 언어모델 기반의 판결문 문장 생성에 관한 파일럿 연구)

  • So, Kwangsub;Kim, Ho-Jung;Park, Ro-Seop;Won, Dong-Ok
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.443-445
    • /
    • 2022
  • 인공지능 기술이 발전함에 따라 경찰의 범죄수사 분야에서도 인공지능 기술을 적용하고자 하는 연구가 활발하다. 범죄수사의 결과물인 수사결과 보고서 작성에 있어 판결문은 중요한 데이터가 될 수 있다. 그러나 판결문은 공개된 데이터의 이미지화로 인해 정형화된 데이터의 확보가 까다롭고, 소수의 법조계 전문가가 아닌 일반인이 생성해내기 어려워 데이터 확보가 쉽지 않은 현실이다. 이에 본 연구에서는 생성적 사전학습 언어모델을 이용한 판결문 문장 데이터 생성을 제안하였다. 카카오의 KoGPT를 활용하여 실제 판결문장 일부를 제시한 결과 판결문과 유사한 형태의 문장을 생성한 것을 확인하였다. 향후 판결문 데이터를 활용하기 위한 인공지능 기술 기반 범죄수사 연구에 있어, 생성된 판결문 데이터를 활용할 수 있을 것으로 기대된다.

Outlier Data Clustering using Factor Score (인자 점수를 이용한 이상치 데이터의 군집화)

  • 전성해;임민택;오경환
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.77-80
    • /
    • 2002
  • 이상치를 포함한 학습 데이터의 군집화 전략은 일반적으로 이상치를 포함하여 학습하거나, 이상치를 제거하는 두 가지 선택이 가능하다. 이상치를 제거하지 않고 학습에 반영시켜야 할 경우 한 개 또는 소수의 이상치가 독자적인 군집을 형성하거나 객관적인 군집화를 방해하는 문제가 발생할 수 있다. 이 때 주어진 학습 데이터의 군집 결과가 이상치의 영향으로부터 벗어나기 위해 원래의 학습 데이터에 대한 변환 작업을 거친 후 군집화를 수행할 수 있다. 이러한 변환 방법으로서 본 논문에서는 차원 축소의 기법으로 알려진 인자 분석의 점수를 사용하였다. 인자 점수로 변환된 학습 데이터에 대해 계층적 군집화, K-means 그리고 자기조직화 지도 등과 같은 군집화 알고리즘을 적용하면 이상치가 자신만의 군집을 별도로 형성하지 않고 다른 학습 데이터의 군집에 소속되면서 이상회의 영향으로부터 벗어남을 실험을 통하여 확인하였다.

  • PDF

A Genetic Algorithm Approach to Linear Threshold Neural Network Synthesis (유전자 알고리즘을 이용한 선형 신경회로망 합성 방법)

  • 박주현;이정훈
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.287-290
    • /
    • 1997
  • 신경회로망은 높은 정확도의 학습 결과를 제시하는 장점을 가지고 있어서 패턴 인식을 포함한 여러 분야에서 널리 사용되어지고 있다. 그러나 신경회로망의 설계에 있어 최적의 뉴런과 층의 개수, 그리고 그 연결 등의 기하학적 해답을 제시하기가 어렵고, 서은이 우수하다고 알려진 역전파 학습 알고리즘도 오차가 없는 완벽한 학습 결과를 제시하지 못하며, 상당히 많은 학습 시간이 걸린다는 단점들을 가지고 있다. 이러한 단점들을 극복하기 위해 선형 신경회로망을 합성하는 새로운 방법을 제안하는데, 이진 함수 최소화(binary function minimization)과정을 거친 minimal-sum-of-product(MSP)를 통해서 이진 클래스 패턴(binary class pattem)을 표현 함으로써 오차가 없는 학습 결과를 얻을 수 있으며, 학습에 필요한 패턴과 학습에 걸리는 시간도 대폭 줄일수 있다. 본 논문에서는 유전자 알고리즘을 이용하여 선형 신경회로망을 합성하는 방법을 제안하며, 여러 가지 예제를 통해 제안한 방법의 우수성을 보인다.

  • PDF

Learning of Mixtures of Experts Network Based on Kalman Filtering (칼만 필터링을 이용한 Mixtures of Experts network 학습)

  • 김병관;최우경;김성주;김종수;서재용;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.65-68
    • /
    • 2004
  • 복잡한 문제 학습을 위해 여러 가지 형태의 모듈라 네트워크의 구조가 제시되어 왔다. 그 중 엑스퍼트 네트워크와 게이팅 네트워크로 구성된 Mixtures of Experts network은 복잡한 문제를 단순한 문제들로 분해하고, 각각의 엑스퍼트 네트워크가 분해된 단순한 문제를 학습하여 결과를 도출함으로써, 국소적 지역해의 위험을 방지하고 보다 정확한 학습을 가능하게 한다. 그러나 엑스퍼트 네트워크의 수렴은 게이팅 네트워크의 수렴에 많은 영향을 받게 되고, 모든 복잡한 데이터에 대한 엑스퍼트 네트워크의 기여도를 학습하는 게이팅 네트워크는 역전파 알고리즘에 의한 학습 방법으로는 수렴 속도가 떨어진다. 본 논문에서는 게이팅 네트워크를 칼만필터로 학습하여 복잡한 문제에 대한 강건성은 유지하고 보다 빠른 수렴이 가능한 방법을 제시하고자한다.

  • PDF

IAFC(Integrated Adaptive Fuzzy Clustering)Model Using Supervised Learning Rule for Pattern Recognition (패턴 인식을 위한 감독학습을 사용한 IAFC( Integrated Adaptive Fuzzy Clustering)모델)

  • 김용수;김남진;이재연;지수영;조영조;이세열
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.153-157
    • /
    • 2004
  • 본 논문은 패턴인식을 위해 사용할 수 있는 감독학습을 이용한 supervised IAFC neural network 1과 supervised IAFC neural network 2를 제안하였다 Supervised IAFC neural network 1과 supervised IAFC neural network 2는 LVQ(Learning Vector Quantization)를 퍼지화한 새로운 퍼지 학습법칙을 사용하고 있다. 이 새로운 퍼지 학습 법칙은 기존의 학습률 대신에 퍼지화된 학습률을 사용하고 있는데, 이 퍼지화된 학습률은 조건 확률을 퍼지화 한 것에 근간을 두고 있다. Supervised IAFC neural network 1과 supervised IAFC neural network 2의 성능과 오류역전파 신경회로망의 성능을 비교하기 위하여 iris 데이터를 사용하였는데, 실험결과 supervised IAFC neural network 2 의 성능이 오류역전파 신경회로망의 성능보다 우수함이 입증되었다.

  • PDF