Abstract
The goal is to implement AI using reinforcement learning, which replaces the less favored Supporter in MOBA games. ML_Agent implements game rules, environment, observation information, rewards, and punishment. The experiment was divided into P and C group. Experiments were conducted to compare the cumulative compensation values and the number of deaths to draw conclusions. In group C, the mean cumulative compensation value was 3.3 higher than that in group P, and the total mean number of deaths was 3.15 lower. performed cooperative play to minimize death and maximize rewards was confirmed.
연구는 MOBA 게임에서 선호도가 낮은 Supporter를 대체하는 인공지능을 강화학습을 이용한 구현을 목표하였다. ML_Agent를 이용해 게임의 규칙, 환경, 관측 정보, 보상 처벌을 구성하였다. DPS 에이전트로 구성된 그룹과, Support 에이전트가 있는 그룹으로 나누어 강화학습을 진행하였다. 결과 데이터인 누적 보상 값, 사망 횟수 바탕으로 결론을 도출하였다. 협력 플레이 그룹이 비교 그룹보다 평균 누적 보상 값이 3.3 더 높게 측정되었으며 사망 횟수 총합 평균은 3.15 낮게 되었다. 이를 바탕으로 죽음을 최소화하고 보상을 최대화하는 협력 플레이를 수행하는 강화학습을 확인할 수 있었다.