Machine learning and artificial intelligence are core technologies for the 4th industrial revolution. However, it is difficult for the general public to get familiar with those technologies because most people lack programming ability. Thus, we developed a Graphic User Interface(GUI) to overcome this obstacle. We adopted TensorFlow and used .Net of Microsoft for the develop. With this new GUI, users can manage data, apply algorithms, and run machine learning without coding ability. We hope that this development will be used as a basis for developing artificial intelligence in various fields.
The purpose of this study was to analyze successful intelligence and learning strategies for the scientific gifted and the general students in elementary school. For this purpose, we conducted a survey targeting 327(including 159 gifted students) 5th - 6th grader elementary students in Incheon Metropolitan City. We were utilized to evaluate the students' successful intelligence(Song, 2002) and learning strategies(Kim, 2005). The results of this study were as follows. First, successful intelligence and learning strategies of the scientific gifted students in elementary school were higher than the regular class students, it was a significant difference statistically(p < .001). Second, when compared according to grade level, the scientific gifted students class higher than the general class students, it was a significant difference statistically(p < .001). Third, when compared according to gender, the scientific gifted students were higher than the general class in both men and women, it was a significant difference statistically(p < .001)
This research has been conducted for the purpose of studying the relationships among emotional intelligence, learning flow and academic resilience of dental hygiene department students. The study involved in 319 students from 1st grade through 3rd grade in Daegu health college who filled out questionnaire in May, 2018. We are closely analyzed data using SPSS window ver.18.0. After analyzing the results, this report shows that there was a strong correlation among emotional intelligence, learning flow and academic resilience. In addition, the higher the level of emotional intelligence, the level of learning flow and academic resilience was also elevated. Therefore, this research suggests that the standardized programs and curriculum needs to be adopted in school.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2005.04a
/
pp.335-339
/
2005
본 논문에서는 퍼지 RBF 네트워크의 학습 성능을 개선하기 위하여 Delta-bar-Delta 알고리즘을 적용하여 학습률을 동적으로 조정하는 개선된 퍼지 RBF 네트워크를 제안한다. 제안된 학습 알고리즘은 일반화된 델타 학습 방법에 퍼지 C-Means 알고리즘을 결합한 방법으로, 중간층의 노드를 자가 생성하고 중간층과 출력충의 학습에는 일반화된 델타 학습 방법에 Delta-bar-Delta 알고리즘을 적용하여 학습률을 동적으로 조정하여 학습 성능을 개선한다. 제안된 RBF 네트워크의 학습 성능을 평가하기 위하여 컨테이너 영상에서 추출한 40개의 식별자를 학습 데이터로 적용한 결과, 기존의 ART2 기반 RBF 네트워크와 기존의 퍼지 RBF 네트워크 보다 학습 시간이 적게 소요되고, 학습의 수렴성이 개선된 것을 확인하였다.
As cases of social and ethical problems caused by artificial intelligence technology have occurred, artificial intelligence ethics are drawing attention along with social interest in the risks and side effects of artificial intelligence. Artificial intelligence ethics should not just be known and felt, but should be actionable and practiced. Therefore, this study proposes an artificial intelligence ethics education model to strengthen the practical ability of artificial intelligence ethics. The artificial intelligence ethics education model derived educational goals and problem-solving processes using artificial intelligence through existing research analysis, applied teaching and learning methods to strengthen practical skills, and compared and analyzed the existing artificial intelligence education model. The artificial intelligence ethics education model proposed in this paper aims to cultivate computing thinking skills and strengthen the practical ability of artificial intelligence ethics. To this end, the problem-solving process using artificial intelligence was presented in six stages, and artificial intelligence ethical factors reflecting the characteristics of artificial intelligence were derived and applied to the problem-solving process. In addition, it was designed to unconsciously check the ethical standards of artificial intelligence through preand post-evaluation of artificial intelligence ethics and apply learner-centered education and learning methods to make learners' ethical practices a habit. The artificial intelligence ethics education model developed through this study is expected to be artificial intelligence education that leads to practice by developing computing thinking skills.
Journal of Korea Society of Industrial Information Systems
/
v.6
no.3
/
pp.71-78
/
2001
Since web-based tutoring systems are generally composed with passive and static hypertext, they could not provide adaptive learning environments according to learning ability of each student. In this study, we suggest an intelligent tutoring system, which grasps the learning state of student and provides each student with dynamic learning materials suitable to individual feature based on learning result. It is an agent based system, in which, courseware knowledge for learning is effectively constructed, the proper feedback according to learning assessment is inferred, and it is given to each student.
Proceedings of the Korea Inteligent Information System Society Conference
/
2002.11a
/
pp.399-408
/
2002
다중 에이전트 학습이란 다중 에이전트 환경에서 에이전트간의 조정을 위한 행동전략을 학습하는 것을 말한다. 본 논문에서는 에이전트간의 통신이 불가능한 다중 에이전트 환경에서 각 에이전트들이 서로 독립적으로 대표적인 강화학습법인 Q학습을 전개함으로써 서로 효과적으로 협조할 수 있는 행동전략을 학습하려고 한다. 하지만 단일 에이전트 경우에 비해 보다 큰 상태-행동 공간을 갖는 다중 에이전트환경에서는 강화학습을 통해 효과적으로 최적의 행동 전략에 도달하기 어렵다는 문제점이 있다. 이 문제에 대한 기존의 접근방법은 크게 모듈화 방법과 일반화 방법이 제안되었으나 모두 나름의 제한을 가지고 있다. 본 논문에서는 대표적인 다중 에이전트 학습 문제의 예로서 먹이와 사냥꾼 문제(Prey and Hunters Problem)를 소개하고 이 문제영역을 통해 이와 같은 강화학습의 문제점을 살펴보고, 해결책으로 신경망 SOM을 이용한 일반화 방법인 QSOM 학습법을 제안한다. 이 방법은 기존의 일반화 방법과는 달리 군집화 기능을 제공하는 신경망 SOM을 이용함으로써 명확한 다수의 훈련 예가 없어도 효과적으로 이전에 경험하지 못했던 상태-행동들에 대한 Q값을 예측하고 이용할 수 있다는 장점이 있다. 또한 본 논문에서는 실험을 통해 QSOM 학습법의 일반화 효과와 성능을 평가하였다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2003.05a
/
pp.81-84
/
2003
$\varepsilon$-SVR(e-Support Vector Regression)학습방법은 SV(Support Vector)들을 이용하여 함수 근사(Regression)하는 방법으로 최근 주목받고 있는 기법이다. SVM(SV machine)의 한 가지 방법으로, 신경망을 기반으로 한 다른 알고리즘들이 학습과정에서 지역적 최적해로 수렴하는 등의 문제를 한계로 갖는데 반해, 이러한 구조들을 대체할 수 있는 학습방법으로 사용될 수 있다. 일반적인 $\varepsilon$-SVR에서는 학습 데이터와 관사 함수 f사이에 허용 가능한 에러범위 $\varepsilon$값이 학습하기 전에 정해진다. 그러나 Nu-SVR(ν-version SVR)학습방법은 학습의 결과로 최적화 된 $\varepsilon$값을 얻을 수 있다. 정해진 기저함수가 포함되는 $\varepsilon$-SVR 학습방법(Sermparametric SVR)은 정해진 독립 기저함수를 사용하여 함수를 근사하는 방법으로, 일반적인 $\varepsilon$-SVR 학습방범에 비해 우수한 결과를 나타내는 것이 성공적으로 입증된 바 있다. 이에 따라, 본 논문에서는 정해진 기저함수가 포함된 ν-SVR 학습 방법을 제안하고, 이에 대한 수식을 유도하였다. 그리고, 모의 실험을 통하여 제안된 Sermparametric ν-SVR 학습 방법의 적용 가능성을 알아보았다.
Proceedings of the Korea Inteligent Information System Society Conference
/
2007.11a
/
pp.294-302
/
2007
멀티 에이전트 강화학습에서 중요한 이슈 중의 하나는 자신의 성능에 영향을 미칠 수 있는 다른 에이전트들이 존재하는 동적 환경에서 어떻게 최적의 행동 정책을 학습하느냐 하는 것이다. 멀티 에이전트 강화 학습을 위한 기존 연구들은 대부분 단일 에이전트 강화 학습기법들을 큰 변화 없이 그대로 적용하거나 비록 다른 에이전트에 관한 별도의 모델을 이용하더라도 현실적이지 못한 가정들을 요구한다. 본 논문에서는 상대 에이전트에 대한RBFN기반의 행동 정책 모델을 소개한 뒤, 이것을 이용한 강화 학습 방법을 설명한다. 본 논문에서는 제안하는 멀티 에이전트 강화학습 방법은 기존의 멀티 에이전트 강화 학습 연구들과는 달리 상대 에이전트의 Q 평가 함수 모델이 아니라 RBFN 기반의 행동 정책 모델을 학습한다. 또한, 표현력은 풍부하나 학습에 시간과 노력이 많이 요구되는 유한 상태 오토마타나 마코프 체인과 같은 행동 정책 모델들에 비해 비교적 간단한 형태의 행동 정책 모델을 이용함으로써 학습의 효율성을 높였다. 본 논문에서는 대표적이 절대적 멀티 에이전트 환경인 고양이와 쥐 게임을 소개한 뒤, 이 게임을 테스트 베드 삼아 실험들을 전개함으로써 제안하는 RBFN 기반의 정책 모델의 효과를 분석해본다.
최근에는 전문가의 지식과 경험정보가 데이터베이스로 구축된 전문가 시스템의 정보를 이용하여 처리된 결과를 판단하여 안전하고 효율적인 선박운항이 가능하도록 한 지능형 선박에 관한 연구가 활발하게 진행되고 있다. 본 논문에서는 지능형 선박을 구현하기 위한 연구의 일환으로써, 선박의 조타기를 제어하기 위한 지능형 조타 조작 모델을 구현한다. 지능형 시스템을 구현하기 위해서 자연언어를 사용하는 인간의 학습 방법에 기초한 언어지시기반학습(LIBL)기법을 적용하고. 퍼지이론을 이용하여 승선경력이 풍부한 조타수의 경험을 조사 및 분석하여 그 결과를 바탕으로 퍼지 추론에 의해 타각을 제어하기 위한 퍼지 조타 조작 모델을 구현하여 그 효용성을 살펴보았다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.