RBFN-based Policy Model for Efficient Multiagent Reinforcement Learning

효율적인 멀티 에이전트 강화학습을 위한 RBFN 기반 정책 모델

  • Published : 2007.11.23

Abstract

멀티 에이전트 강화학습에서 중요한 이슈 중의 하나는 자신의 성능에 영향을 미칠 수 있는 다른 에이전트들이 존재하는 동적 환경에서 어떻게 최적의 행동 정책을 학습하느냐 하는 것이다. 멀티 에이전트 강화 학습을 위한 기존 연구들은 대부분 단일 에이전트 강화 학습기법들을 큰 변화 없이 그대로 적용하거나 비록 다른 에이전트에 관한 별도의 모델을 이용하더라도 현실적이지 못한 가정들을 요구한다. 본 논문에서는 상대 에이전트에 대한RBFN기반의 행동 정책 모델을 소개한 뒤, 이것을 이용한 강화 학습 방법을 설명한다. 본 논문에서는 제안하는 멀티 에이전트 강화학습 방법은 기존의 멀티 에이전트 강화 학습 연구들과는 달리 상대 에이전트의 Q 평가 함수 모델이 아니라 RBFN 기반의 행동 정책 모델을 학습한다. 또한, 표현력은 풍부하나 학습에 시간과 노력이 많이 요구되는 유한 상태 오토마타나 마코프 체인과 같은 행동 정책 모델들에 비해 비교적 간단한 형태의 행동 정책 모델을 이용함으로써 학습의 효율성을 높였다. 본 논문에서는 대표적이 절대적 멀티 에이전트 환경인 고양이와 쥐 게임을 소개한 뒤, 이 게임을 테스트 베드 삼아 실험들을 전개함으로써 제안하는 RBFN 기반의 정책 모델의 효과를 분석해본다.

Keywords