• 제목/요약/키워드: 학습열의

Search Result 691, Processing Time 0.036 seconds

Curriculum Service Design of Computational Science Engineering Platform (계산과학공학 플랫폼의 커리큘럼 서비스 설계)

  • Ma, Jin;Seo, Jerry;Shin, Jung-Hoon;Kwon, Ye-Jin;Jeon, In-Ho;Lee, Jong-Suk Ruth
    • Annual Conference of KIPS
    • /
    • 2018.05a
    • /
    • pp.202-204
    • /
    • 2018
  • 2018년 현재 한국과학기술정보연구원(KISTI)은 계산과학공학 플랫폼 기반으로 온라인 시뮬레이션이 가능한 EDISON(EDucation-research Integration through Simulation On the Net) 서비스를 제공하고 있다. 해당 플랫폼 서비스는 7개 전문분야(전산의학, 전산설계, 전산열유체, 구조동역학, 계산화학, 나노물리, 도시환경)의 학생 및 연구자들이 학습 및 시뮬레이션을 실행하고 결과를 활용할 수 있도록 지원하고 있다. 하지만 EDISON 플랫폼은 시뮬레이션 서비스에 초점을 맞춰 개발과 서비스를 제공했기 때문에 국내외 MOOC(Massive Open Online Course) 서비스들에 비해 아직 교육 콘텐츠가 부족하다. 그리하여 본 논문에서는 계산과학공학 플랫폼에 교육 콘텐츠를 체계적으로 제공하기 위한 커리큘럼 서비스를 설계 및 제안하였다.

Prediction of Reservoir-Inflow using LSTM (LSTM을 이용한 댐 유입량 예측 평가)

  • Mok, Ji-Yoon;Hwang, Sung-hwan;Choi, Ji-Hyeok;Moon, Young-Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.319-319
    • /
    • 2019
  • 기후변화로 인한 극한 기후 상황의 증가로 홍수기 홍수피해와 갈수기 가뭄피해가 심화되고 있으며, 수자원 관리에 대한 어려움이 발생하고 있다. 효율적인 수자원 관리를 위해 국내에는 약 1,8000여개의 댐을 운영하고 있으며, 댐의 유입량과 저수량을 감안하여 물을 적절하게 방류하는 것을 목적으로 한다. 그러기 위해서는 유입량이 우선적으로 확보되어야 하며, 더 나아가 유입량을 미리 예측할 수 있다면 더욱 효율적인 댐 운영이 가능할 것이다. 기존에는 수위나 유량을 예측하기 위해서는 주로 물리적 모형이 사용되어 왔으며, 물리적 모형은 매개변수 결정을 위한 많은 자료를 필요로 하고 그 과정에서 많은 불확실성을 포함하고 있기 때문에 계산 과정을 거치는 동안 다양한 오차가 반복 누적되는 단점이 있다. 반면에 시계열 데이터 예측을 위한 알고리즘 LSTM(Long Short-Term Memory)은 입력된 데이터와 출력된 데이터를 동시에 이용하여 보다 정확한 예측 값을 얻을 수 있다. 따라서 본 연구는 다목적댐의 유입유량 예측을 위해 구글에서 제공하는 딥러닝 오픈소스 라이브러리를 활용하여 LSTM모형을 구축하고 댐 유입유량을 예측하였다. 분석 자료로는 wamis에서 제공하는 용담댐의 2006년부터 2018년까지의 시간당 유입량 자료를 사용하였으며, 입력 데이터로 모형을 학습한 후 2018년의 유입량을 예측하였다. 예측 값의 정확도를 판단하기 위해 2018년의 실제 유입량 자료와 비교하였다.

  • PDF

Performance Comparison of Machine Learning in the Prediction for Amount of Power Market (전력 거래량 예측에서의 머신 러닝 성능 비교)

  • Choi, Jeong-Gon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.5
    • /
    • pp.943-950
    • /
    • 2019
  • Machine learning can greatly improve the efficiency of work by replacing people. In particular, the importance of machine learning is increasing according to the requests of fourth industrial revolution. This paper predicts monthly power transactions using MLP, RNN, LSTM, and ANFIS of neural network algorithms. Also, this paper used monthly electricity transactions for mount and money, final energy consumption, and diesel fuel prices for vehicle provided by the National Statistical Office, from 2001 to 2017. This paper learns each algorithm, and then shows predicted result by using time series. Moreover, this paper proposed most excellent algorithm among them by using RMSE.

Analyzing the internal parameters of a deep learning-based distributed hydrologic model to discern similarities and differences with a physics-based model (딥러닝 기반 격자형 수문모형의 내부 파라메터 분석을 통한 물리기반 모형과의 유사점 및 차별성 판독하기)

  • Dongkyun Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.92-92
    • /
    • 2023
  • 본 연구에서는 대한민국 도시 유역에 대하여 딥러닝 네트워크 기반의 분산형 수문 모형을 개발하였다. 개발된 모형은 완전연결계층(Fully Connected Layer)으로 연결된 여러 개의 장단기 메모리(LSTM-Long Short-Term Memory) 은닉 유닛(Hidden Unit)으로 구성되었다. 개발된 모형을 사용하여 연구 지역인 중랑천 유역을 분석하기 위해 1km2 해상도의 239개 모델 격자 셀에서 10분 단위 레이더-지상 합성 강수량과 10분 단위 기온의 시계열을 입력으로 사용하여 10분 단위 하도 유량을 모의하였다. 모형은 보정과(2013~2016년)과 검증 기간(2017~2019년)에 대한 NSE 계수는각각 0.99와 0.67로 높은 정확도를 보였다. 본 연구는 모형을 추가적으로 심층 분석하여 다음과 같은 결론을 도출하였다: (1) 모형을 기반으로 생성된 유출-강수 비율 지도는 토지 피복 데이터에서 얻은 연구 지역의 불투수율 지도와 유사하며, 이는 모형이 수문학에 대한 선험적 정보에 의존하지 않고 입력 및 출력 데이터만으로 강우-유출 분할과정을 성공적으로 학습하였음을 의미한다. (2) 모형은 연속 수문 모형의 필수 전제 조건인 토양 수분 의존 유출 프로세스를 성공적으로 재현하였다; (3) 각 LSTM 은닉 유닛은 강수 자극에 대한 시간적 민감도가 다르며, 응답이 빠른 LSTM 은닉 유닛은 유역 출구 근처에서 더 큰 출력 가중치 계수를 가졌는데, 이는 모형이 강수 입력에 대한 직접 유출과 지하수가 주도하는 기저 흐름과 같이 응답 시간의 차이가 뚜렷한 수문순환의 구성 요소를 별도로 고려하는 메커니즘을 가지고 있음을 의미한다.

  • PDF

Flood Predicion of Dorimcheon Stream basin using LSTM (LSTM 기법을 이용한 도림천 유역의 침수 예측)

  • Se Dong Jang;Byunghyun Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.513-513
    • /
    • 2023
  • 최근 이상기후의 영향으로 국지성 및 집중호우로 인한 침수 피해가 증가하고 있다. 도시유역의 홍수는 사회적·경제적으로 큰 손실을 야기할 수 있어 실제 호우에 대한 침수 양상을 신속하게 예측하는것은 매우 중요하다. 이로 인해 침수 해석에 대한 결과를 빨리 제공할 수 있는 기계학습을 기반으로 한 도시 홍수 분석에 대한 연구가 증가하고 있다. 본 연구에서 적용한 LSTM(Long Short-Term Memory) 신경망은 기존 RNN(Recurrent neural network)이 가지고 있는 장기 의존성 문제를 해결하기 위해 고안된 모델으로 시계열 데이터에 대한 예측능력이 뛰어나다는 장점을 가지고있다. LSTM 신경망은 강우에 대한 격자별 침수심을 예측하기 위해 사용되었으며, 입력자료로 2000~2022년도에 걸친 도림천 유역의 침수피해를 야기한 지속시간 6시간 AWS(Automatic Weather System) 관측 강우 자료를 사용하였고 목표값으로 수집된 도림천 유역의 강우자료를 이용하여 SWMM(Storm Water Management Model)의 유출 결과를 바탕으로 수행된 2차원 침수해석 모의 결과를 사용하였다. 연구유역의 SWMM 배수 관망 입력자료의 정확성을 높이기 위해 서울시 하수관로 수위 현황 자료를 활용하여 매개변수 조정을 실시하였으며, 하수관로의 실측 수위와 모의 수위를 일치시켰다. LSTM 신경망을 이용하여 격자별로 예측된 침수심 데이터를 시각화하여 침수흔적도와 비교하였다.

  • PDF

Transformer-based Language Recognition Technique for Big Data (빅데이터를 위한 트랜스포머 기반의 언어 인식 기법)

  • Hwang, Chi-Gon;Yoon, Chang-Pyo;Lee, Soo-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.267-268
    • /
    • 2022
  • Recently, big data analysis can use various techniques according to the development of machine learning. Big data collected in reality lacks an automated refining technique for the same or similar terms based on semantic analysis of the relationship between words. Big data is usually in the form of sentences, and morphological analysis or understanding of the sentences is required. Accordingly, NLP, a technique for analyzing natural language, can understand the relationship of words and sentences. In this paper, we study the advantages and disadvantages of Transformers and Reformers, which are techniques that complement the disadvantages of RNN, which is a time series approach to big data.

  • PDF

Sport Situational Analysis Using Artificial Intelligence : Focused on Football Expected Goal (인공지능을 이용한 스포츠 상황 분석 서비스 : 축구의 기대 득점을 중심으로)

  • Kim, Jin Sob;Kim, Min Jun;Lee, Kwanhyeong;Yoon, Yongsoo;Moon, Jaehyun
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.826-829
    • /
    • 2020
  • 스포츠팀 운영에 있어서 경기 중 상황에 대한 통계와 분석을 통해 좋은 성과를 내는 것은 스포츠 야구 종목의 Sabermetrics를 통해 이미 증명된 바가 있다. 한편, 축구에서는 최근 들어 선수의 역량을 평가하기 위하여 객관적인 시각에서 슈터(Shooter)에게 주어진 기회, 즉 슈팅 상황을 바라보는 기대 득점(Expected Goal; 이하 xG)이라는 지표가 등장하였으나, 객관성이라는 평가 의도와 다르게 경기 내 각각의 슈팅 상황을 정의하는 것에 있어 축구 분석관들의 주관성에 의존하는 한계성을 지녔다. 본 논문은 xG를 산출하는 방식에 있어서 기존의 주관성을 배제하고 인공지능을 통해 상황을 정의하여 객관적인 평가지표를 지향하며 유의미한 통계적 수치를 지닌 xG를 도출함으로써 결과 위주의 분석만이 존재하던 축구 종목에 있어서 경기 중 상황에 대한 객관적인 판단 및 정의에 대한 방향성을 제시한다. 또한, 본 논문에서의 인공지능은 국내 K리그 슈팅 데이터를 통해 학습되어 K리그 내 전략적인 상황들에 대한 특화된 xG를 도출하며, 이를 웹을 통해 K리그 내 선수 개개인에 대해서 시계열, 상대 팀, 슈팅 위치별 그래프로 시각화하여 제공하는 시스템을 구축함으로써 K리그를 기준으로 선수에 대한 평가 및 경기 운영에 기여할 수 있는 기대 득점 분석 서비스를 제공한다.

Analysis of Baltic Dry Bulk Index with EMD-based ANN (EMD-ANN 모델을 활용한 발틱 건화물 지수 분석)

  • Lim, Sangseop;Kim, Seok-Hun;Kim, Daewon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.329-330
    • /
    • 2021
  • 벌크화물운송은 해상운송시장에서 가장 큰 규모이고 철강 및 에너지 산업을 뒷받침 하는 중요한 시장이다. 또한 운임의 변동성이 가장 큰 시장으로 상당한 수익을 기대할 수 있는 반면에 파산에 이르는 큰 손실이 발생할 수 있기때문에 시장 참여자들은 합리적이고 과학적인 예측을 기반하여 의사결정을 해야 한다. 그러나 해운시장에서는 과학적 의사결정보다는 경험기반의 의사결정에 의존하기 때문에 시황변동성에 취약하다. 본 논문은 벌크운임예측에 신호 분해 방법인 EMD와 인공신경망을 결합한 하이브리드 모델을 적용하여 과학적 예측방법을 제시하고자 한다. 본 논문은 학문적으로 해운시장 운임예측연구에서 거의 시도되지 않았던 시계열분해법과 기계학습기법을 결합한 하이브리드 모델을 제시하였다는데 의미가 있으며 실무적으로는 해운시장에서 빈번이 일어나는 의사결정의 질이 제고되는데 기여할 것으로 기대된다.

  • PDF

Explainable Solar Irradiation Forecasting Based on Conditional Random Forests (조건부 랜덤 포레스트 기반의 설명 가능한 일사량 예측)

  • Moon, Jihoon;Hwang, Eenjun
    • Annual Conference of KIPS
    • /
    • 2020.05a
    • /
    • pp.323-326
    • /
    • 2020
  • 태양광 발전은 이산화탄소 배출로 인한 기후 변화에 대응하는 주요 수단으로 인식되어 수요와 필요성이 급격하게 증가하고 있다. 최적의 태양광 발전 시스템의 운영을 위해서는 정교한 전력수요 및 태양광 발전량 예측 모델이 요구되며, 온도 및 일사량은 태양광 발전량 예측 모델의 필수적인 입력 변수이다. 하지만, 한국 기상청의 동네예보는 일사량에 관한 예측값을 제공하지 않아 정교한 태양광 발전량 예측 모델을 구축하는 것은 어렵다. 이를 위해 일사량 예측 기법에 관한 많은 연구사례가 보고되고 있지만, 다수의 연구들은 충분한 데이터 셋을 이용하여 일사량 예측 모델을 개발하였다. 초기 태양광 발전 시스템 운영을 위해서는 불충분한 데이터 셋을 이용한 예측 모델 개발이 필요하나 이에 대한 사례는 불충분하다. 본 논문은 실제 태양광 발전 시스템에서 수집된 불충분한 데이터 셋을 이용한 단기 일사량 예측 기법을 제안한다. 먼저, 기상청 동네예보의 다양한 기상 요인들을 이용하여 일사량 예측 모델을 위한 입력 변수를 구성한다. 다음으로, 조건부 랜덤 포레스트를 이용하여 일사량 예측 모델을 구성하며, 설명 가능한 일사량 예측뿐만 아니라 더욱더 많은 데이터 셋을 학습하기 위해 시계열 교차검증을 수행한다. 실험 결과, 제안한 기법은 다른 예측 기법들보다 높은 예측 정확도를 보일 뿐만 아니라 설명 가능한 예측 결과를 제시할 수 있음을 보여준다.

Development of River Water Level Prediction Model Based on Artificial Intelligence for Independent Flood Alert (독립적 하천홍수경보를 위한 인공지능기반 하천수위예측모형 개발)

  • Kim, Sooyoung;Kim, Hyung-Jun;Kim, Boram;Yoon, Kwang Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.328-328
    • /
    • 2021
  • 최근 전 지구적인 기후변화의 영향은 강우량의 집중을 야기하며 홍수피해의 규모를 증가시키는 영향을 끼친다. 특히, 아세안 국가들은 해수면 상승, 태풍 및 집중호우에 의한 침수피해 빈발로 최소 2,000만명이 영향을 받고 있다. 국내의 홍수예보모형을 수출하여 아세안 국가에 구축하고 있으나 통신 시설이 불안정하여 중앙제어 방식의 기존의 홍수예보시스템만으로는 긴급상황에 대한 대처가 부족할 수 있다. 따라서 본 연구에서는 하나의 관측소에서 수위, 강우의 관측과 홍수예측, 경보까지 한번에 가능한 관측소를 개발하기 위해 관측된 수위와 강우자료를 활용하여 인공지능기반의 하천수위예측 모형을 개발하였다. 목표 리드타임은 30분에서 6시간으로 설정하였으며 모형은 Tensorflow로 구축하였다. 시계열 자료의 예측에 적합한 LSTM 기법을 적용하였다. 연구의 대상지역은 건설연의 계측시험유역인 설마천유역으로 하였으며 학습에는 2009년부터 2020년까지의 10분 단위 수위 및 강우량자료를 활용하였다. 연구결과 설마천 유역은 규모가 작고 도달시간이 짧아 1시간 후 예측까지는 높은 정확도를 나타냈으나 3시간 이상의 예측결과는 다소 낮게 평가되었다. 다만, 비상상황에서 통신이 두절된 상황에서 위급하게 대피를 위해 홍수경보를 발령하는데는 활용이 가능 할 것으로 판단된다.

  • PDF