• 제목/요약/키워드: 학습열의

검색결과 691건 처리시간 0.033초

기계학습 기반 내부자위협 탐지기술: RNN Autoencoder를 이용한 비정상행위 탐지 (Detecting Insider Threat Based on Machine Learning: Anomaly Detection Using RNN Autoencoder)

  • 하동욱;강기태;류연승
    • 정보보호학회논문지
    • /
    • 제27권4호
    • /
    • pp.763-773
    • /
    • 2017
  • 최근 몇 년 동안 지속적으로 개인정보유출, 기술유출 사고가 빈번하게 발생하고 있다. 조사에 따르면 이러한 유출 사고의 주체로 가장 많은 부분을 차지하고 있는 것이 조직 내부에 있는 '내부자'로, 내부자에 의한 기술유출은 조직에 막대한 피해를 주기 때문에 점점 더 중요한 문제로 여겨지고 있다. 본 논문에서는 내부자위협을 방지하기 위해 기계학습을 이용하여 직원들의 일반적인 정상행위를 학습하고, 이에 벗어나는 비정상 행위를 탐지하기 방법에 대한 연구를 하고자 한다. Neural Network 모델 중 시계열 데이터의 학습에 적합한 Recurrent Neural Network로 구성한 Autoencoder를 구현하여 비정상 행위를 탐지하는 방법에 대한 실험을 진행하였고, 이 방법에 대한 유효성을 검증하였다.

심탄도를 이용한 연속적인 심박수 모니터링 및 당뇨 예측 가능성 연구(파일럿연구) (Heart rate monitoring and predictability of diabetes using ballistocardiogram(pilot study))

  • 최상기;이거룡
    • 디지털융복합연구
    • /
    • 제18권8호
    • /
    • pp.231-242
    • /
    • 2020
  • 연구의 목적은 가정에서 안정 시 인체의 생리적 활력 정보를 센서와 ICT 정보 기술을 통해 연속적으로 수집하는 시스템과 수집된 정보를 이용하여 당뇨병증 유무를 예측하는 인공신경망 기계학습 방법과 필수적인 기본 변수 값을 제시하였다. 연구 방법은 정상인(DM-) 20명과 당뇨병(DM+) 15명을 대상으로 BCG와 ECG 센서의 심박수 측정값의 상관 관계를 분석하였으며 상관 계수는 R2=0.959이다. Artificial Neural Network(ANN) 기계학습 프로그램을 이용하여 당뇨병증 예측 가능성을 확인하였고 입력 변수는 심박변이도의 시계열정보와 심박수, 심박변이도, 호흡율, 박동량 정보, 최저혈압, 최고혈압, 년령, 성별이며 ANN 기계학습 예측 정확도는 99.53%이다. 그리고 향후 ANN 기계학습 방법을 활용하여 BMI 정보를 이용한 당뇨예측 모델, 심장 기능 장애 예측 모델, 수면장애 분석 모델 등의 계속적인 연구가 필요하다.

다중지능을 이용한 초등학교 도덕 교과서 탐구 과제의 교수·학습 전략 분석 (An Analysis on Teaching and Learning Strategies of Inquiry Tasks in the Elementary Moral Textbooks by Multiple Intelligence)

  • 노정임;송기호;유종열
    • 한국문헌정보학회지
    • /
    • 제51권2호
    • /
    • pp.5-22
    • /
    • 2017
  • 본 연구의 목적은 다중지능을 활용하여 초등학교 도덕 교과서 탐구 과제에 포함된 교수 학습전략을 정보 활용 과정별로 분석하고, 사서교사가 제공할 수 있는 교육정보서비스를 제안하는 것이다. 분석 결과 도덕 교과서의 탐구 과제는 언어 지능과 논리 수학 지능 및 공간 지능을 중심으로 설계된 것으로 나타났다. 정보 활용 과정별로는 분석 이해 단계는 언어지능과 공간 지능이 주로 적용되고 있다. 그리고 종합 적용 단계는 논리 수학 지능이 표현 전달 단계는 언어 지능이 주로 적용되고 있다. 따라서 탐구 활동의 부족한 다중지능을 길러주기 위하여 사서교사는 공간과 교구를 개선하고, 탐구 과제의 교과 연계성을 분석하여 그래픽조직자를 활용한 학습지를 제공할 필요가 있다.

퍼지추론에 의한 지능형 음성지시 조타기 제어 시스템의 구축 (Building of an Intelligent Ship's Steering Control System Based on Voice Instruction Gear Using Fuzzy Inference)

  • 서기열;박계각
    • 한국정보통신학회논문지
    • /
    • 제7권8호
    • /
    • pp.1809-1815
    • /
    • 2003
  • 최근 선박 운항의 고효율화 및 안전성 확보를 위하여 지능형 선박 시스템에 관한 연구가 활발하게 진행되고 있다. 전문가의 지식과 경험 정보가 데이터베이스로 구축된 전문가 시스템의 지식 정보를 이용하여 안전하고 효율적인 선박 운항이 가능한 항해 지원 시스템에 관한 연구도 활발하다. 따라서, 본 논문에서는 지능형 선박을 구현하기 위한 연구의 일환으로 퍼지 추론과 휴먼 인터페이스의 하나인 음성 인식 기술을 적용하여 선박 운항자의 부담 경감 및 인원 절감 등의 효과를 가져 올 수 있는 지능형 선박 조종 시스템을 구축한다. 구체적인 연구방법으로는 먼저, 음성 인식 기술과 지능형 학습 기법을 기반으로 음성 지시 기반 학습 시스템을 구현하고, 다음으로 퍼지 추론에 의한 조타수 조작 모델을 구성하여 PC기반 원격 제어 시스템을 구축하였다. 마지막으로 구현된 음성 지시 조타 제어 시스템을 모형 선박 시스템에 적용하여 그 효용성을 확인하였다.

CAI 프로그램의 활용에 따른 학습 효과 분석 (Analysis of Loaming Effects on Utilization of CAI Program)

  • 조해곤;정재열;노영욱;최재혁
    • 정보처리학회논문지A
    • /
    • 제9A권1호
    • /
    • pp.113-120
    • /
    • 2002
  • 지금까지 중등 교육을 위한 많은 CAI 자료가 개발되었다. 중등 교과 중 특히 과학 과목은 기존의 교과서 이 외의 다양한 멀티미디어 자료들을 수업에 많이 활용한다. 과학 과목 중 생물의 생태와 구조 및 성분에 대한 기초 지식을 효율적으로 습득시키기 위해서는 다양한 멀티미디어 자료가 꼭 필요하다. 이러한 목적으로 본 논문에서는 중학교 1학년 과학 교과 과정 중 심장과 혈액의 순환 부분을 택하여 멀티미디어 타이틀을 구현하였다. 하지만 기존의 선행 연구들은 CAI 프로그램을 개발하는 데에만 중점을 두었고, 이러한 CAI 프로그램들이 실제로 학습에 미치는 영향에 대한 실증적인 분석 결과들은 거의 제시하지 않았다. 따라서 본 연구에서는 개발한 CAI 프로그램의 활용 유무에 따라 학습에 미치는 영향에 대한 분석 방법과 그 결과를 제시하였고, 또한 앞으로 멀티미디어 CAI를 활용한 수업의 효율성을 극대화할 수 있는 방안을 제시하였다.

해외지수와 투자자별 매매 동향에 따른 딥러닝 기반 주가 등락 예측 (Deep Learning-Based Stock Fluctuation Prediction According to Overseas Indices and Trading Trend by Investors)

  • 김태승;이수원
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권9호
    • /
    • pp.367-374
    • /
    • 2021
  • 주가 예측은 경제, 통계, 컴퓨터 공학 등 여러 분야에서 연구되는 주제이며, 특히 최근에는 기본적 지표나 기술적 지표 등 다양한 지표로부터 인공지능 모델을 학습하여 주가의 변동을 예측하는 연구들이 활발해 지고 있다. 본 연구에서는 S&P500 등의 해외지수, 과거 KOSPI 지수, 그리고 KOSPI 투자자별 매매 동향으로부터 KOSPI의 등락을 예측하는 딥러닝 모델을 제안한다. 제안 모델은 주가 등락 예측을 위하여 비지도 학습 방법인 적층 오토인코더를 이용하여 잠재변수를 추출하고, 추출된 잠재변수로부터 시계열 데이터 학습에 적합한 LSTM 모델로 학습하여 당일 시가 대비 종가의 등락을 예측하며, 예측된 값을 기반으로 매수 또는 매도를 결정한다. 본 연구에서 제안하는 모델과 비교 모델들의 수익률 및 예측 정확도를 비교한 결과 제안 모델이 비교 모델들 보다 우수한 성능을 보였다.

부산광역시 온천천 유역의 RNN-LSTM 알고리즘을 이용한 DO농도 예측 (Prediction of the DO concentration using the RNN-LSTM algorithm in Oncheoncheon basin, Busan, Republic of Korea)

  • 임희성;안현욱
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.86-86
    • /
    • 2021
  • 온천천은 부산광역시 금정구, 동래구, 연제구를 흐르는 도심 하천으로 부산 시민들의 도심 속 산책길, 자전거 길 등으로 활용되는 도시하천이다. 그러나 온천천 양안의 동래 곡저 평야가 시가지화 되고 온천천 발원지인 금정산 주변에서 무허가 상수도를 사용하고 각종 쓰레기와 하수의 유입으로 인해 하천 전체가 하수관으로 변해왔다. 이에 따라 부산광역시는 온천천 정비 계획을 시행하여 하천 정비와 함께 자동측정망을 설치하여 하천의 DO (dissolved oxygen), 탁도, TDS농도 등 자료를 수집하고 있다. 그러나 자동측정망으로 쌓여가는 데이터를 활용하여 DO농도 예측은 거의 이뤄지지 않고 있다. DO는 하천의 수질 오염 정도를 판단하는 수질인자로 역사적으로 하천 연구의 주요 연구 대상이 되어 왔다. 본 연구에서는 일 자료 뿐만 아니라 시 자료를 기반으로 RNN-LSTM 알고리즘을 활용한 DO예측을 시도하였다. RNN-LSTM은 시계열 학습에 뛰어난 알고리즘으로 인공신경망의 발전된 형태인 순환신경망이다. 연구에 앞서 부산광역시 보건환경정보 공개시스템으로부터 받은 자료 중에서 교정, 보수 중, 비사용, 장비전원단절 등으로 인해 누락데이터를 2014년 1월 1일부터 2018년 12월 31일의 데이터 전수조사 후 이상데이터를 확인하여 선형 보간하여 데이터를 사용하였다. 연구에서는 Google에서 개발한 딥러닝 오픈소스 라이브러리인 텐서플로우를 활용하여 부산광역시 금정구 부곡동에 위치한 부곡교 관측소의 DO농도를 시간 또는 일 예측을 하였다. 일 예측 학습에는 2014년~ 2018년의 기상자료(기온, 상대습도, 풍속, 강수량), DO농도 자료를 사용하였고, 시 예측 학습에는 연속된 자료가 가장 많은 2015년 3월 ~ 12월까지의 데이터를 활용하여 연구를 진행하였다. 모형의 검증을 위해 결정계수(R square)를 이용하여 통계분석을 실시하였다.

  • PDF

섬진강 댐의 수문학적 예측을 위한 딥러닝 모델 활용 (Utility of Deep Learning Model for Improving Dam and Reservoir Operation: A Case Study of Seonjin River Dam)

  • 이은미;감종훈
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.483-483
    • /
    • 2022
  • 댐과 저수지의 운영 최적화를 위한 수문학적 예보는 현재 수동적인 댐 운영이 주를 이루면서 활용도가 높지 않다. 불확실한 기후변화나 기후재난 상황에서 우리 사회에 악영향을 최소화하기 위해 선제적으로 대응/대비할 수 있는 댐 운영 방안이 불가피하다. 강우량 예측 기술은 기후변화로 인해 제한적인 상황이다. 실례로, 2020년 8월에 섬진강의 댐이 극심한 집중 강우로 인해 무너지는 사태가 발생하였고 이로 인해 지역사회에 막대한 경제적 피해가 발생하였다. 선제적 댐 방류량 운영 기술은 또한 환경적인 변화로 인한 영향을 완화하기 위해 필요한 것이다. 제한적인 기상 예보 기술을 극복하고자 심화학습이나 강화학습 같은 인공지능 모델들의 활용성에 대한 연구가 시도되고 있다. 따라서 본 연구는 섬진강 댐의 시간당 수문 데이터를 이용하여 댐 운영을 위한 심화학습 모델을 개발하고 그 활용도를 평가하였다. 댐 운영을 위한 심화학습 모델로서 시계열 데이터 예측에 적합한 Long Sort Term Memory(LSTM)과 Gated Recurrent Unit(GRU) 알고리즘을 구축하고 댐 수위를 예측하였다. 분석 자료는 WAMIS에서 제공하는 2000년부터 2021년까지의 시간당 데이터를 사용하였다. 입력 데이터로서 시간당 유입량, 강우량과 방류량을, 출력 데이터로서 시간당 수위 자료를 각각 사용하였으며. 결정계수(R2 Score)를 통해 모델의 예측 성능을 평가하였다. 댐 수위 예측값 개선을 위해 하이퍼파라미터의 '최적값'이 존재하는 범위를 줄여나가는 하이퍼파라미터 최적화를 두 가지 방법으로 진행하였다. 첫 번째 방법은 수동적 탐색(Manual Search) 방법으로 Sequence Length를 24, 48, 72시간, Hidden Layer를 1, 3, 5개로 설정하여 하이퍼파라미터의 조합에 따른 LSTM와 GRU의 민감도를 평가하였다. 두 번째 방법은 Grid Search로 최적의 하이퍼파라미터를 찾았다. 이 두가지 방법에서는 같은 하이퍼파라미터 안에서 GRU가 LSTM에 비해 더 높은 예측 정확도를 보였고 Sequence Length가 높을수록 정확도가 높아지는 경향을 보였다. Manual Search 방법의 경우 R2가 최대 0.72의 정확도를 보였고 Grid Search 방법의 경우 R2가 0.79의 정확도를 보였다. 본 연구 결과는 가뭄과 홍수와 같은 물 재해에 사전 대응하고 기후변화에 적응할 수 있는 댐 운영 개선에 도움을 줄 수 있을 것으로 판단된다.

  • PDF

LSTM Autoencoder를 이용한 자기상관 공정의 모니터링 절차 (Procedure for monitoring autocorrelated processes using LSTM Autoencoder)

  • 지평진;이재헌
    • 응용통계연구
    • /
    • 제37권2호
    • /
    • pp.191-207
    • /
    • 2024
  • 자기상관 공정에서 이상상태를 빠르게 탐지하는 절차에 대해 많은 연구가 진행되어 왔다. 가장 전통적인 절차는 관측된 데이터에 대해 적합한 시계열 모형에서 계산된 잔차를 이용하는 잔차 관리도이다. 그러나 최근에는 통계적 학습 방법을 이용하여 자기상관 공정을 모니터링하는 절차가 많이 제안되었다. 이 논문에서는 딥러닝에 기반한 비지도 학습 방법인 LSTM Autoencoder의 잠재 벡터를 이용한 모니터링 절차를 제안하고, 이를 모의실험을 통해 LSTM Autoencoder의 복원 오차를 이용한 절차, RNN 분류 모니터링 절차, 그리고 잔차 관리도 절차의 성능과 비교하였다. 모의실험 결과, 제안된 절차와 RNN 분류 모니터링 절차의 성능은 유사하지만, 제안된 절차는 학습에 이상상태의 데이터가 필요하지 않기 때문에 이상상태의 데이터를 충분하게 확보할 수 없는 공정에 유용하게 적용할 수 있다는 장점이 있다.

강화학습 모델에 대한 적대적 공격과 이미지 필터링 기법을 이용한 대응 방안 (Adversarial Attacks on Reinforce Learning Model and Countermeasures Using Image Filtering Method)

  • 이승열;하재철
    • 정보보호학회논문지
    • /
    • 제34권5호
    • /
    • pp.1047-1057
    • /
    • 2024
  • 최근 심층 신경망을 이용한 강화학습 모델들이 자율주행, 스마트 팩토리, 홈 네트워크 등 다양한 첨단 산업 분야에 사용되고 있으나 적대적 공격(adversarial attacks)에 취약하다는 것이 밝혀졌다. 본 논문에서는 강화학습 기반의 딥러닝 모델인 DQN과 PPO를 자율주행 가상환경 HighwayEnv에 적용하여 FGSM(Fast Gradient Sign Method), BIM(Basic Iterative Method), PGD(Projected Gradient Descent) 그리고 CW(Carlini and Wagner)을 이용하여 적대적 공격을 수행하였다. 적대적 공격에 대응하기 위해 양방향 필터(bilateral filter) 알고리즘을 사용하여 적대적 이미지의 잡음을 제거함으로써 강화학습 기반의 딥러닝 모델들이 정상적으로 작동할 수 있는 방법을 제안하였다. 그리고 HighwayEnv 환경에서 에피소드 수행 길이(episode during)의 평균과 에이전트가 획득한 보상(episode reward)의 평균을 성능평가 지표로 사용하여 공격의 성능을 평가하였다. 실험 결과 양방향 필터를 통해 적대적 이미지의 잡음을 제거한 결과, 적대적 공격이 수행되기 이전의 성능을 유지할 수 있음을 보였다.