• Title/Summary/Keyword: 하중막

Search Result 79, Processing Time 0.027 seconds

Assessment of Transmissivity of Blended Geotextiles for Drainage (배수용 혼합 지오텍스타일의 수평투수성 평가)

  • 전한용;목문성;주용수;유중조
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.428-431
    • /
    • 2001
  • 토목합성재료(Geosynthetics) 중 배수용으로 사용되는 재료는 기능상 유체의 흐름을 수평방향으로 유도하는 재료를 의미하며, 일반적으로 저장된 유체를 수직으로 이동시키는 필터기능을 가지는 1,000g/㎡ 미만의 지오텍스타일(geotextiles)과 수평방향의 유도로를 확보한 지오네트(geonets)를 결합시킨 지오네트 복합제품이 사용되고 있다. 이러한 배수용 토목합성재료는 쓰레기 매립장의 건설 시 침출수의 외부유출을 차단하기 위하여 설치하는 차수막인 지오멤브레인(geomembranes)을 매립된 쓰레기 하중 및 외부의 충격으로부터 보호하는 용도로 사용된다. (중략)

  • PDF

Friction Characteristics of DLC and WC/C (DLC와 WC/C의 마찰특성)

  • Kim, Dong-Wook;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.27 no.6
    • /
    • pp.308-313
    • /
    • 2011
  • In this study, friction tests were performed in order to investigate the effect of sliding velocity and normal load on the friction characteristics of DLC (a-C:H) and WC/C (a-C:H:W) using a ball-on-disk type friction tester. DLC and WC/C were deposited on AISI 52100 steel balls. Friction tests against carburized SCM 415 Cr-Mo steel disks were carried out under various sliding velocity (0.1, 0.78, 1.56, 3.13, 6.25, 12.5, 25, 50 and 100 mm/s) and normal load (2.4, 4.8 and 9.6 N) conditions while the relative humidity was 20~40 % R.H. and air temperature was $16{\sim}24^{\circ}C$. As results, kinetic friction coefficients of DLC and WC/C were obtained under each test condition. The results show that the kinetic friction coefficients of DLC and WC/C generally increase with the increase in sliding velocity. And, under the same sliding velocity condition, the kinetic friction coefficients are almost constant regardless of normal load. In addition, the kinetic friction coefficients of DLC are lower than those of WC/C under the same test conditions.

The Effect of Si Content on the Tribological Behaviors of Ti-Al-Si-N Coating Layers (Ti-Al-Si-N 코팅막의 마모거동에 미치는 Si 함량의 영향)

  • Jin, Hyeong-Ho;Kim, Jung-Wook;Kim, Kwang-Ho;Yoon, Seog-Young
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.2 s.273
    • /
    • pp.88-93
    • /
    • 2005
  • Ti-AI-Si-N coating layers were deposited on WC-Co substrates by a hybrid system of arc ion plating and sputtering techniques. The coatings were prepared with different Si contents to investigate the effect of Si content on their mechanical properties and microstructures. The dry sliding wear experiments were conducted on Ti-AI-Si-N coated WC-Co discs at constant load, 3N, and sliding speed, 0.1 m/s with two different counterpart materials such as steel ball and zirconia ball using a conventional ball-on-disc sliding wear apparatus. In the case of steel ball, the friction coefficient of Ti-AI-Si-N coating layers became lower than that of Ti-AI­N coating layers. The friction coefficient decreased with increasing of Si content due to adhesive wear behavior between coating layer and steel ball. On the contrary, in the case of zirconia ball, the friction coefficient increased with increasing of Si content, indicating that abrasive wear behavior was more dominant when the coating layers slid against zirconia ball.

Evaluation of Post-Buckling Residual Strength of H-Section Steel Column for Both Ends are Fixed Condition (양단고정 단부구속에 따른 H 형 강재기둥의 좌굴 후 잔존내력 평가)

  • Abebe, Daniel Yeshewawork;Choi, Jae Hyouk;Kim, Jin Hyang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.83-88
    • /
    • 2013
  • Progressive collapse is a chain reaction of failures propagating throughout a portion of a structure that is disproportionate to the original local failure. When column members are subjected to unexpected load (compression load), they will buckle if the applied load is greater than the critical load that induces buckling. The post-buckling strength of the columns will decrease rapidly, but if there is enough residual strength, the members will absorb the potential energy generated by the impact load to prevent progressive collapse. Thus, it is necessary to identify the relationship of the load-deformation of a column member in the progressive collapse of a structure up to final collapse. In this study, we carried out nonlinear FEM analysis and based on deflection theory, we investigated the load-deformation relationship of H-section steel columns when both ends were fixed.

Predicting the Nonlinear Behavior of Reinforced Concrete Membrane Elements Subjected to Reversed Cyclic Loading (반복하중을 받는 철근콘크리트 막요소의 비선형거동에 대한 예측)

  • 이정윤
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.7-13
    • /
    • 2002
  • The behaviors of the reinforced concrete membrane elements are expected by Navier's three principles of the mechanics of materials. The adopted cyclic stress-strain curves of concrete consist of seven different unloading and loading stages in the compressive zone and six other stages in the tensile zone. The curves took into account the softening of concrete that was influenced by the tensile strain in the perpendicular direction of cracks. The stress-strain relationships for steel bar embedded in concrete subjected to reversed cyclic forces considered the tension stiffening effect and Baushinger effect. The predicted results of the analysis based on Navier's principles were in good agreement with the observed shear stress-strain relationships as well as transverse and longitudinal strains.

Design versus Ultimate Behavior of Reinforced Concrete Hyperbolic Paraboloid Saddle Shell (철근콘크리트 쌍곡 '안장' 쉘의 설계 예와 극한거동)

  • Min, Chang Shik;Gupta, Ajaya K.
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.807-814
    • /
    • 1994
  • One case of pointwise limit design is performed for a hyperbolic paraboloid saddle shell(originally used by the Lin-Scordelis) to check the design strength against a consistent design loads, therefore, to verify the adequacy of current design practice for reinforced concrete shells. The design method which was based on stresses from membrane analysis in conjunction with pointwise limit state design equations shows a good performance, which means that the design method gives a lower bound on the ultimate load. This shows the adequacy of the current practice at least for this saddle shell case studied. To generalize the conclusion many more designs-analyses are performed with different shell configurations.

  • PDF

Wear Properties of Seal Graphite at Elevated Temperature (기밀소재 Graphite의 고온마모 특성에 관한 연구)

  • Yang, Ho-Young;Kim, Jaehoon;Ha, Jaeseok;Kim, YeonWook;Park, Sunghan;Lee, Hwankyu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.3
    • /
    • pp.15-20
    • /
    • 2013
  • The graphites as airtight structure seals prevent high-pressure and high-temperature gas from flowing into actuator of propulsion system and generate lubricant film during wear procedure to assist lubricant and sealing. In this study, the tribological characteristics of the graphite in high-temperature are evaluated. In order to evaluate the tribological characteristics of high density graphite(HK-6), variables which are temperature, sliding speed and contact load are set. this study suggest optimized environment conditions through the wear properties of graphite. Consequeantly, high temperature is better than at room temperature to generate lubricant film, so that friction coefficient of graphite is lower at high temperature than at room temperature.

The Static Unstable Characteristics of Tensegrity-Type Cable Dome according to the Structural System (구조시스템에 따른 Tensegrity형 케이블 돔의 정적 불안정 거동특성)

  • Cho, In-Ki;Kim, Hyung-Seok;Kim, Seung-Deog;Kang, Moon-Myung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.3 s.13
    • /
    • pp.65-75
    • /
    • 2004
  • A shell structure, having a curvature with a curved surface, is an extremely efficient mechanical creation regard to the external load. A basic structural resistance mechanism is the structural system, which is resisted the out-of-plane direction load by in-plane forces using the structure's curvature. Therefore, it has a merit to make thin and lightweight large spacial structures using minimum materials. Among the large spare structural system, the rapid development of the membrane structures, cable structures and the hybrid structures are watched recently. But, this kind of structural system shows the unstable phenomenon by snap-through or bifurcation according to the shape of structure, and the understanding of the collapse mechanism by this phenomenon is very important to the design process. In this study, I investigated the unstable characteristics of the Geiger-type, Zetlin-type and flower-type hybrid cable dome structures, which is the lightweight hybrid structures using compression and tension elements continuously, according to the difference of structural system.

  • PDF

Stress and Fatigue Evaluation of Distributor for Heat Recovery Steam Generator in Combined Cycle Power Plant (복합발전플랜트 배열회수보일러 분배기의 응력 및 피로 평가)

  • Lee, Boo-Youn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.44-54
    • /
    • 2018
  • Stress and fatigue of the distributor, an equipment of the high-pressure evaporator for the HRSG, were evaluated according to ASME Boiler & Pressure Vessel Code Section VIII Division 2. First, from the results of the piping system analysis model, reaction forces of the tubes connected to the distributor were derived and used as the nozzle load applied to the detailed analysis model of the distributor afterward. Next, the detailed model to analyze the distributor was constructed, the distributor being statically analyzed for the design condition with the steam pressure and the nozzle load. As a result, the maximum stress occurred at the bore of the horizontal nozzle, and the primary membrane stress at the shell and nozzle was found to be less than the allowable. Next, for the transient operating conditions given for the distributor, thermal analysis was performed and the structural analysis was carried out with the steam pressure, nozzle load, and thermal load. Under the transient conditions, the maximum stress occurred at the vertical downcomer nozzle, and of which fatigue life was evaluated. As a result, the cumulative usage factor was less than the allowable and hence the distributor was found to be safe from fatigue failure.

Analysis on Response Characteristics of a Flexible Net Sheet in Waves (파랑중 유연한 그물망의 응답특성 해석)

  • Cho, Il-Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.2
    • /
    • pp.89-96
    • /
    • 2012
  • Based on the hydroelastic theory and the matched eigenfunction expansion method(MEEM), the dynamic behavior of the porous flexible net sheet and wave forces have been investigated in monochromatic waves. The net sheet is installed vertically with the submergence depth. Top end of a net sheet is fixed and its lower end is attached by a clump weight. It is assumed that the initial tension is sufficiently large so that the effects of dynamictension variation can be neglected. The boundary condition on the porous flexible net sheet is derived based on Darcy's fine-pore model and body boundary condition. The developed analytic model can be extended to the impermeable/permeable vertical plate and the impermeable flexible membrane. The analytical model was used to study the influence of design parameters(wave characteristics, porosity, submergence depth, initial tension) on the response characteristics and wave load of the net sheet.