References
-
D. McIntyre, J. E. Greene, G. Hakansson, J. E. Sundgren, and W. D. Munz, 'Oxidation of Metastable Single-Phase Polycrystalline
$Ti_{0.5}Al_{0.5}N$ Films : Kinetics and Mechanisms,' J. Appl. Phys., 67 [3] 1542-53 (1990) https://doi.org/10.1063/1.345664 - S. Paldey and S. C. Deevi, 'Single Layer and Multilayer Wear Resistant Coatings of (Ti,AI)N : A Review,' Mat. Sci. Eng. A, 342 58-79 (2003) https://doi.org/10.1016/S0921-5093(02)00280-0
-
S. Veprek, S. Reiprich, and L. Shizhi, 'Superhard Nanocrystalline Composite Materials : The TiN/
$Si_3N_4$ System,' Appl. Phys. Lett., 66 2640-42 (1995) https://doi.org/10.1063/1.113110 - S. Veprek, 'Conventional and New Approaches Towards the Design of Novel Superhard Materials,' Surf. Coat. Tech., 97 15-22 (1997) https://doi.org/10.1016/S0257-8972(97)00279-X
-
F. Vaz, L. Rebouta, P. Goudeau, J. Pacaus, H. Garem, J. P. Riviere, A. Cavaleiro, and E. Alves, 'Characterisation of
$Ti_{1-x}Si_xN_y$ Nanocomposite Films,' Surf. Coat. Tech., 133-134 307-13 (2000) https://doi.org/10.1016/S0257-8972(00)00947-6 - I. W. Park, S. R. Choi, J. H. Suh, C. G. Park, and K. H. Kim, 'Deposition and Mechanical Evaluation of Superhard Ti-AlSi-N Nanocomposite Films by a Hybrid Coating System,' Thin Solid Films, 447-448 443-48 (2004) https://doi.org/10.1016/S0040-6090(03)01122-2
- S. Carvalho, F. Vaz, L. Rebouta, D. Schneider, A. Cavaleiro, and E. Alves, 'Elastic Properties of (Ti,Al,Si)N Nanocomposite Films,' Surf. Coat. Tech., 142-144 110-16 (2001) https://doi.org/10.1016/S0257-8972(01)01242-7
- M. Sakaki and T. Sakakibara, 'Excitaion, Ionization and Reaction Mechanism of a Reactive Cathodic Arc Deposition of TiN,' IEEE Trans. Plasma Sci., 22 [6] 1049-54 (1994) https://doi.org/10.1109/27.370251
- D.-Y Wang, C.-L, Chang, K.-W. Wong, Y.-W. Li, and W.Y. Ho, 'Improvement of the Interfacial Integrity of (Ti,Al)N Hard Coatings Deposited on High Speed Steel Cutting Tools,' Surf. Coat. Tech., 120-121 388-94 (1999)
- K. H. Kim, S.-R. Choi, and S. Y. Yoon, 'Superhard Ti-Si-N Coatings by a Hybrid System of Arc Ion Plating and Sputtering Techniques,' Surf. Coat. Tech., 161 243-48 (2002) https://doi.org/10.1016/S0257-8972(02)00499-1
- M. Diserens, J. Patscheider, and F. Levy, 'Improving the Properties of Titanium Nitride by Incorporation of Silicon,' Surf. Coat. Tech., 108-109 241-46 (1998) https://doi.org/10.1016/S0257-8972(98)00560-X
- S. H. Kim, J. K. Kim, and K. H. Kim, 'Influence of Deposition Conditions on the Microstructure and Mechanical Properties of Ti-Si-N Films by DC Reactive Magnetron Sputtering,' Thin Solid Films, 420-421 360-65 (2002) https://doi.org/10.1016/S0040-6090(02)00833-7
-
S. Wilson and A. T. Alpas, 'Dry Sliding Wear of a PVD TiN Coating Against
$Si_3N_4$ at Elevated Temperatures,' Wear, 86-87 75-81 (1996) - J. Takadoum, H. Houmid-Bennani, and D. Mairey, 'The Wear Characteristics of Silicon Nitride,' J. Eur. Ceram. Soc., 18 553-56 (1998) https://doi.org/10.1016/S0955-2219(97)00157-X
Cited by
- CrN and TiN Coatings for the Wear Resistance of Extrusion Mold for Magnesium vol.44, pp.6, 2011, https://doi.org/10.5695/JKISE.2011.44.6.233
- A Comparative Study of Nanocrystalline TiAlN Coatings Fabricated by Direct Current and Inductively Coupled Plasma Assisted Magnetron Sputtering vol.51, pp.5, 2014, https://doi.org/10.4191/kcers.2014.51.5.375
- Effect of Inductively Coupled Plasma on the Microstructure, Structure and Mechanical Properties of NbN Coatings vol.48, pp.5, 2015, https://doi.org/10.5695/JKISE.2015.48.5.205