• Title/Summary/Keyword: 하부플랜지

Search Result 73, Processing Time 0.024 seconds

플랜지-염회수용기 일체형 염증류장치 개발

  • Gwon, Sang-Un;Jeong, Jae-Hu;Lee, Yeong-Sang;Gang, Han-Byeol;Kim, Taek-Jin;An, Do-Hui;Lee, Seong-Jae
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2016.10a
    • /
    • pp.117-118
    • /
    • 2016
  • 염증류장치의 효율 향상 및 조업 편의성을 제고하기 위하여 염회수용기를 하부 플랜지에 삽입하여 일체형 증류장치를 개발하기 위한 연구를 수행하였다. 플랜지-염회수용기 일체형 진공증류장치는 응축조에 염회수용기를 따로 두지 않고, 하부 플랜지가 염회수 용기의 역할을 할 수 있도록 함으로써 냉각 기체와 접촉면이 증가하므로 냉각 효율을 높였고, 냉각 플랜지를 상하 회전하여 회수된 염을 탈착함으로써 염의 재순환 작업이 매우 편리할 것으로 판단된다.

  • PDF

An Experimental Study on the Fire Resistance behaviour of Asymmetric Slimfloor Beam According to Cross Section Shape Variation (비대칭 H형강 합성보의 단면형상변화에 따른 온도특성 및 화재거동에 관한 실험적 연구)

  • Kim, Hyung-Jun;Kim, Heung-Youl;Lee, Jae-Sung;Kwon, Ki-Hyuck;Yeo, In-Hwan
    • Fire Science and Engineering
    • /
    • v.26 no.1
    • /
    • pp.23-30
    • /
    • 2012
  • The temperature development of a structural element is dependent on section factor, which is estimated as a ratio of the fire-exposed perimeter to the cross-section area. Hence, with the higher section factor, the faster temperature development of the section os observed. Composite beam member, partially embedded asymmetry H beam, has a good fire resistance to the cross-section. The study was intended to conduct with change with section factor. The experimental result of section type which the Slim Beam Floor is bottom flange reinforced method.

Flexural Design of Double Composite Box Girder over Interior Pier by LRFD Method (LRFD법에 의한 이중합성 박스거더 최대부모멘트 단면 휨 설계)

  • Cho, Eun Young;Shin, Dong Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.737-749
    • /
    • 2007
  • Flexural design of double composite box girder over the interior pier for three-span continuous bridge was performed by the LRFD method. The maximum span length of the continuous bridge ranged from 80m to 120m and the relative ratio of the span length was assumed to be 1:1.25:1. The girder section was designed for the strength limit state and service limit state with additional design check for constructibility. Before the bottom concrete and compression flange showed a complete composite action, the buckling of lower compression flange was checked. The flexural stiffness and flexural resistance characteristics for the section and for the constituent members such as tension flange, compression flange, and web were analyzed for different thicknesses of the bottom concrete on top of the compression flange. The effect of the distribution ratio of steel between the top and bottom flanges was investigated by analyzing ductility behavior and stress distribution through the girder's depth for several different relative area ratios of steel between the top and bottom flanges. It was found that a total amount of 15% of steel can be saved by applying the double composite system compared with that of the conventional composite system.

Experimental Study on Fatigue Crack in Welded Crane Runway Girders(I) -Initiation and Propagation of Fatigue Crack- (크레인 거더의 피로균열에 관한 실험적 연구(I) -피로균열의 발생과 진전-)

  • Im, Sung Woo;Kim, Jin Ho;Chang, In Hwa;Shinga, Atsumi
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.2 s.31
    • /
    • pp.237-248
    • /
    • 1997
  • Three types of fatigue cracks frequently observed in the crane runway girders are verified experimentally using two testing-purpose girders with the size of $6400{\times}600{\times}300$ in millimeters. The fatigue cracks are observed in the vicinity of load-bearing points, at the end of gusset plates and at the fillet welded joints between the lower flange and the web. The load-bearing-point cracks are initiated at the intersection of the fillet welds between the upper flange and the web, where the vertical stiffener is located. The cracks grow up toward the diagonal direction of the web. The cracks observed at the fillet welded joints grow up perpendicularly to the crane runway girder. Compared with the JSSC fatigue design code, the joint class is classified as follows: E for the vicinity of load-bearing points, G or H for the end of gusset plates and D for the lower fillet welded joints. The tests reveal that the class of joint classification at the end of gusset plates and at the lower flange coincides with the fatigue design code.

  • PDF

Ultimate Behavior of Compression Flange Stiffened by Shear Stud on Double Composite Steel Box Girder (이중합성 강박스거더에서 전단연결재에 의해 보강된 압축플랜지의 극한거동에 관한 연구)

  • Lee, Doo Sung;Lee, Sung Chul;Suh, Suk Koo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.457-463
    • /
    • 2008
  • The longitudinal stiffener performs its role to increase the local buckling strength by making simple support upon compression flange. In the recent researches, it is investigated that compression flange with point supports on certain arrangement reveals the same strength with longitudinal stiffeners. From this results, it is predictable that shear stud could perform the role of longitudinal stiffener if shear stud embedded in concrete satisfies the requirement to point-support under yield stress of the compression flange. In this study, the researches were performed to investigate the optimally required arrangement space of longitudinal point-support for which the shear stud replacing the longitudinal stiffeners and simultaneously determine the required numbers and space of shear stud for completely composite behavior between compression bottom flange and bottom concrete on the double composite girder system.

Flexural Testing of Asymmetric Hybrid Composite Beams Fabricated from High-strength Steels (고강도강재를 적용한 비대칭 하이브리드 합성보의 휨거동 실험)

  • Jun, Su Chan;Han, Kyu Hong;Lee, Cheol Ho;Kim, Jin Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.3
    • /
    • pp.217-228
    • /
    • 2017
  • Full-scale flexural testing of asymmetric H-shape hybrid composite beams was conducted in this study. In fabricating hybrid H-shape sections, high strength steels were utilized for the bottom flange while ordinary strength steels were used for the top flange and web. With adding a fully composite floor slab, a total of 8 hybrid composite beam specimens were tested. The primary objective was to develop the asymmetric hybrid H-shape composite beams with maximized flexural efficiency and investigate their flexural behavior. Not all the hybrid composite specimens tested in this study exhibited the plastic moment and reasonable deformability. In the specimens with high-strength bottom flange, the longitudinal shear crack of the slab along the beam axis often preceded the development of beam plastic moment, although the slab was designed as fully composite. The mechanical reason for this unexpected behavior is discussed. It is emphasized that the longitudinal shear strength of composite slab should be checked in designing hybrid composite beams utilizing high strength steels like in this study.

A Study on Optimum Section of New Type Steel-Concrete Composite Beam (신형상 층고절감형 합성보의 최적단면 도출에 관한 연구)

  • Yoon, Myung-Ho;Lee, Yoon-Hee
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.30-35
    • /
    • 2011
  • This study investigates the optimum section properties of newly developed steel-concrete composite beam. For that purpose we developed computer program calculating section properties. The suggested new beam section highly contribute to save inter-story height and reduce construction duration and cost compared with conventional steel works such as H-beam and column + RC slab system. But the section shape have different section modulus with upper and lower fiber because of the unsymmetric cross section. Therefore the parametric study on thickness-ratio of top and bottom flange plate is needed. In this paper the change of neutral axis and section modulus for thickness-ratio of up and down flage plate is analysed and discussed.

A Study on the Method of Local Stress Evaluation for the Wind Turbine Tower Flange (풍력발전시스템 타워의 플랜지 국부 응력 평가 기법 연구)

  • Won, Jong-Bum;Lee, Kang-Su;Park, Jong-Vin;Kim, Mann-Eung;Han, Sung-Kon;Lee, Sang-Lae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.200-206
    • /
    • 2010
  • 본 논문은 풍력발전 시스템의 하부 지지 구조물인 타워의 플랜지 연결부 설계 평가를 위한 플랜지 모델건전성 평가 기법에 대해 다룬다. 일반적으로 풍력발전 시스템 타워의 연결부는 Ring-형 플랜지의 형태를 가지고 있다. 이러한 ring-형 플랜지에 대한 설계 기준 및 방법은 풍력 발전 시스템 기술기준 등 에 명시되어있다. 이러한 설계 기준을 따르는 플랜지 연결부에 대해 구조 및 체결 볼트의 건전성 평가를 위해 하중평가 전용 프로그램인 GH-Bladed 3.8를 통해 생성된 하중 데이터를 유한요소 범용 프로그램인 Ansys 12.0에 접목하여 구조해석을 수행 하였다. 해석 방법은 풍력발전시스템의 타워를 셸 요소로 모델링하여 계산한 해석 결과를 플랜지 모델의 경계면에 적용 시켜 해석하는 submodeling 기법과 타워를 빔의 형태로 단순화 화여 계산한 거동 결과를 플랜지 모델에 적용하는 기법을 사용 하였다. 이 두 가지의 해석 기법으로 도출된 결과의 비교를 통하여 해석 결과 신뢰성을 평가하고 효율적이고 합리적인 방법을 제시하고자 하였다.

  • PDF

A Study on the Effect of Hot Lines and the Assembly of Flange for a Refrigerator to Reduce Dew Generation (냉장고 Flange부 이슬 맺힘 방지를 위한 열선의 영향 및 조립에 관한 연구)

  • Kim, Na Hyun;Cho, Jong Rae;Park, Sang Hu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.4
    • /
    • pp.391-396
    • /
    • 2015
  • When the temperature of a flange in a refrigerator is reduced to the dew point, condensation is generated on the flange. Generally, hot lines, having a temperature of $35^{\circ}C$, are located near the flange to increase its surface temperature above the dew point. Hot lines are installed in close contact with the flange in order to increase the heat transfer from the hot lines to the flange surface. Through this work, the effects of the hot line shape and installation conditions, including a gap between the hot line and flange, and the function of a spacer in the inner case of the refrigerator were investigated. Additionally, an optimal shape of the inner case for easy assembling is proposed considering the contact between the hot line and flange.

Experimental Study on Seismic Retrofit of Steel Moment Connections Considering Constraint Effect of the Floor Slab (바닥슬래브에 의해 구속된 철골 모멘트접합부의 내진보강에 관한 실험적 연구)

  • Oh, Sang Hoon;Kim, Young Ju;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.247-255
    • /
    • 2004
  • An experimental program was undertaken to develop seismic retrofit methods of existing steel moment connections with floor slab for improved seismic performance. Five full-scale composite specimens were tested under cyclic loading. Conventional through-diaphragm connections [please check this; no search results were found for through-diaphragm connections] composed of square-tube column and H-beam were retrofitted by adding either a bottom-flange dogbone (RBS) or an improved welded horizontal stiffener at the beam bottom flange. The effectiveness of the proposed retrofit connections schemes was evaluated. The specimen retrofitted using the RBS concept at the bottom flange showed poor connection ductility. In contrast. specimens with the proposed horizontal stiffener details exhibited improved connection ductility.