• Title/Summary/Keyword: 하류하천

Search Result 1,596, Processing Time 0.029 seconds

Non-point Reduction Effect due to Mitigation of Slope in Highland Fields (고랭지밭 경사도 완화에 따른 비점 저감 효과)

  • Tae Hwan Lee;Dong Hyuk Kum;Jun Ho Kang;Jeong Ha Lim;Tae Seong Kang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.469-469
    • /
    • 2023
  • 고랭지밭은 집중호우시 토사가 유실되고 고농도의 흙탕물이 하천으로 유입되면서 하류지역의 수질 악화로 사회적·환경적 문제를 초래하고 있다. 이에, 환경부는 비점오염원관리지역을 지정하고 비점오염저감시설을 보급하고 있으나, 저감 노력에도 불구하고 집중호우시 수질 악화는 지속적으로 나타나고 있다. 따라서 발생원 관리 노력이 더욱 많이 필요한 실정인데, 최근 강원도와 환경부에서는 토사유실에 취약한 고랭지밭의 지형적 조건을 개선하여 토양유실을 저감하는 고랭지밭 경사도 완화 사업을 추진하고 있다. 고랭지밭 경사도 완화는 급경사지 및 경사장의 경작지를 계단식으로 조성하여 비점유출을 최소화시키는 발생원 관리방안이다. 그러나, 고랭지밭 경사도 완화에 따른 정량화된 비점유출 저감효과 분석에 관한 연구는 부족한 실정이다. 따라서 본 연구에서는 홍천군 광원리와 창촌리에 조성된 경사도 완화 경작지를 대상으로 강우유출수 모니터링을 수행하였으며, 비점저감효과 정량화를 위해 인근의 경사지 밭에서도 강우유출수 모니터링을 수행하여 대조구로 분석하였다. 강우유출수 모니터링은 2020년 8월에 총 3회(광원리 2회, 창촌리 1회) 수행되었으며, 분석 결과 광원리의 경사도 완화 경작지 평균 수질농도는 탁도 124.4 NTU, SS 111.5 mg/L, TOC 4.6 mg/L로 나타났으며, 대조구의 평균 수질농도는 탁도 1,741.7 NTU, SS 673.3 mg/L, TOC 30.6 mg/L로 나타났다. 광원리의 경사도 완화 경작지는 대조구 대비 수질항목별 83.4 ~ 92.9%의 비점저감 효과가 있는 것으로 나타났다. 창촌리의 경사도 완화 경작지의 평균 수질농도는 탁도 598.1 NTU, SS 414.5 mg/L, TOC 8.5 mg/L로 나타났으며, 대조구 평균 수질농도는 탁도3,487.3 NTU, SS 3,081.2 mg/L, TOC 40.3 mg/L로 나타났다. 창촌리의 경사도 완화 경작지는 대조구 대비 수질항목별 78.9 ~ 86.5%의 수질저감효과가 있는 것으로 나타났다. 경작지의 경사도 완화로 밭에서 발생하는 비점오염 발생을 SS는 최대 86.5%, TOC는 최대 84.9% 줄일 수 있는 것으로 나타났다. 하지만 본 연구 결과는 단년간 모니터링을 통해 도출된 결과이므로 정량화된 비점오염저감효과 도출을 위해서 다양한 강우조건 등을 고려한 지속적인 모니터링이 필요할 것으로 판단되며, 향후 연구에서는 2022년도에 인제군 북면 월학리 신규 조성된 경사도 완화 경작지를 대상으로 강우유출수 모니터링을 수행할 계획이다.

  • PDF

A study on the precise prediction of tides using long-term tidal observation data at the Nakdong River Estuary (낙동강 하구 장기조석관측 자료를 이용한 조위의 정밀예측 연구)

  • Park, Byeong Woo;Kang, Tae Soon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.269-269
    • /
    • 2022
  • 최근 낙동강 하구 기수생태 복원에 있어서 중요한 요소 중 하나는 하굿둑 외해측의 보다 높은 정도를 가지는 조석예보치 산정과 이를 통해 하굿둑 방류량과 해수 유입량을 추정하여 주변 환경 등을 예측할 수 있다. 기수생태 복원이 본격으로 논의가 진행 전인 2016년까지는 하구에서 수km 떨어진 기존 조위관측소(부산 및 가덕도)를 활용하여 하류수위를 예측하여 왔지만 조위 높이와 위상 차이로 인하여 활용이 용이하지 않다. 따라서, 낙동강 하굿둑 인접 외해역에서 조석 영향을 받는 수위관측치를 이용하여 조석조화분해를 통해 조위 예측을 보다 정밀하게 산정하는 것이 필요하다. 연구방법으로는 낙동강 하굿둑 외해역에서 관측된 2016년, 2017년 각각 1년간 10분간격으로 관측자료의 저장상태 및 이상자료 유무를 확인하고, 조석조화분해 프로그램인 TASK2000(Tidal Analysis Software Kit) Package를 이용하여 2016년, 2017년 낙동강 하굿둑 인접 외해역에서 관측된 조위자료를 각각 조석조화분해한 결과로 관측조위와 예측조위 비교하였고, 관측조위와 예측조위를 뺀 성분인 조석잔차성분을 구했다. 조화분해결과, 낙동강 하굿둑 외해역은 일반적인 연안역의 조석과는 달리 하천수의 유출, 배수갑문의 조작, 연안사주지형에 의한 조석변형 등 매우 복잡하고 불규칙적인 특성인 기상성분(기압, 바람 등)에 의한 교란을 고려한다면 예측정확도가 상당부분 확보되는 것으로 나타났다. 또한 장주기 성분과 비선형 조석성분의 크기를 비교해 볼 때 거의 편차가 없이 나타나 조석조화상수를 이용한 예보 가능성을 확인할 수 있었다. 조위검증은 2016년의 1년치의 조석자료를 이용하여 조화분해된 조화상수 63개를 이용하여 2017년의 조석 예보치를 산정하였으며, 이를 2017년의 낙동강 하굿둑 외해역의 조석관측치와 조석예측치를 1대 1 비교하는 방식으로 검증하였고, 이들의 상관관계를 파악하기 위하여 두 성분에 대하여 Regression Analysis를 수행하여 예측조위와 관측조위 사이에는 Pre=0.9535×Obs+0.396과 같은 관계식이 성립하는 것으로 분석되었다. 또한, 두 성분간의 상관도는 0.9535로 높게 나타났다. 조위예측 프로그램인 TASK2000 Package 중 MARIE를 이용한 조위예측 프로그램의 신뢰도가 매우 높은 것으로 판단되고, 해당년도 조위예측 시에는 가능하면 직전년도의 1년 조석관측자료를 조화분해하고 얻어진 조화상수를 이용하여 조위예측을 실시하면 보다 정확한 자료를 얻을 수 있다.

  • PDF

Substrate Selection and Burying Behaviour of Sand-dwelling Endangered Freshwater Fish, Gobiobotia naktongensis (멸종위기 야생생물I급 흰수마자의 모래 선택과 잠입 행동에 관한 연구)

  • Keun-Sik Kim;Moon-Seong Heo;Jin Kim;Chang-Deuk Park;Ju-Duk Yoon
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.4
    • /
    • pp.375-383
    • /
    • 2023
  • To determine the cause of the population decline in Gobiobotia naktongensis, substrate preference and burying behaviour were investigated in this study. In general, the species was shown to prefer a substrate size of 1 mm or less, depending on the flow. In addition, the burying depth varied according to the size of the fish and increased with a decrease in water temperature. Our findings showed that the main cause of the population reduction was the physical changes in the substrate structure due to the dams or barrages construction. Notably, the accumulation of silt and mud in the substrate upon the formation of an upstream lentic water region for structural construction and bed armouring caused by scouring and reduced downstream inflow of fine sediment were deterministic in the fish habitat changes, causing problems in burying. As sand substrate structure is critical for the survival and inhabitation of psammophilous species, efficient strategies should be developed with proper habitat management to reduce the anthropogenic damage

Hydrological Significance on Interannual Variability of Cations, Anions, and Conductivity in a Large Reservoir Ecosystem (대형 인공호에서 양이온, 음이온 및 전기전도도의 연변화에 대한 수리수문학적 중요성)

  • An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.1 s.93
    • /
    • pp.1-8
    • /
    • 2001
  • During April 1993 to November 1994, cations, anions, and conductivity were analyzed to examine how summer monsoon influences the ionic content of Taechung Reservoir, Korea. Interannual variability of ionic content reflected hydrological characteristics between the two years(high-flood year in 1993 vs. draught year in 1994). Cations, anions and conductivity were lowest during peak inflow in 1993 and highest during a drought in 1994. Floods in 1993 markedly decreased total salinity as a result of reduced Ca$^{2+}$ and HCO$_{3}\;^{-}$ and produced extreme spatial heterogeneity (i.e., longitudinal, vertical, and horizontal variation) in ionic concentrations. The dominant process modifying the longitudinal (the headwaters-to-downlake) and vertical (top-to-bottom) patterns in salinity was an interflow current during the 1993 monsoon. The interflow water plunged near a 27${\sim}$37 km-location (from the dam) of the mid-lake and passed through the 10${\sim}$30m stratum of the reservoir, resulting in an isolation of epilimnetic high conductivity water (>100 ${\mu}$S/cm) from advected river water with low conductivity (65${\sim}$75 ${\mu}$S/cm), During postmonsoon 1993, the factors regulating salinity differed spatially; salinity of downlake markedly declined as a result of dilution through the mixing of lake water with river water, whereas in the headwaters it increased due to enhanced CaCO$_{3}$ (originated from limestone/metamorphic rock) of groundwaters entering the reservoir. This result suggests an importance of the basin geology on ion compositions with hydrological characteristics. In 1994, salinity was markedly greater (p<0.001) relative to 1993 and ionic dilution did not occur during the monsoon due to reduced inflow. Overall data suggest that the primary factor influencing seasonal ionic concentrations and compositions in this system is the dilution process depending on the intensity of monsoon rainfall.

  • PDF

Community Analysis and Bological Water Quality Evaluation of Benthic Macroinvertebrate in Wangpi-cheon Watershed (왕피천 유역의 저서성 대형무척추동물 군집분석 및 생물학적 수질평가)

  • Park, Young-Jun;Jeon, Yong-Lak;Kim, Ki-Dong;Yoon, Hee-Nam;Nam, Sang-Ho
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.3
    • /
    • pp.327-343
    • /
    • 2013
  • The aim of this study is to perform community analysis and biological assessment of water quality using benthic macroinvertebrate from Wangpi-cheon watershed which is defined as conservation areas of ecosystem and landscape by ministry of environment in Korea. Field survey of the study area was carried out 2 times from June to September in 2012. As a result of the field survey, total 155 species of benthic macroinvertebrates in 74 families, 15 orders, 7 classes and 5 phyla were collected. The findings of community analysis using the classified species and individuals showed relatively low DI(Dominant Index) value of 0.22 and very high value of average H'(Diversity index) as 4.24. And the analyzed results of SI(Similarity Index) according to habitat types using functional feeding groups showed higher values of 94.51% and 93.19% respectively to tributary and main stream after the designation of conservation areas of ecosystem and landscape. These results infer that various species and lots of individual are widely distributed at Wangpi-cheon watershed and stream ecosystem of the study area is healthy and well maintained after the designation of conservation areas. And also, the calculated EPT value was 62.9% as high enough to explain the cleanness of Wangpi-cheon watershed. We evaluated environmental condition and biological water quality by using ESB(Ecological Score of Benthic macroinvertebrate community) and KSI(Korean Saprobic Index). The average evaluated ESB shows very high value of 208.2, therefore Wangpi-cheon watershed is designated as 'First priority protection waters' area and the value of KSI is 0.32 which meets the saprobic water quality standard as 'First class'.

Evaluation of Water Quality Characteristics on Tributaries of Dongjin River Watershed (동진강 유역내 하천의 특성별 영향평가)

  • Yun, Sun-Gang;Kim, Won-Il;Kim, Jin-Ho;Kim, Seon-Jong;Koh, Mun-Hwan;Eom, Ki-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.4
    • /
    • pp.243-247
    • /
    • 2002
  • Irrigation water quality along Donjin river watershed was monitored to find a possible pollutant, for maintaining water quality to achieve food safety through water quality preservation of river. As a pollution indicators, such as Biological Oxygen Demand(BOD), Chemical Oxygen Demand(COD), Total Nitrogen(T-N), and Total Phosphate(T-P) in Dongjin river were examined from May to November in 2001. The results were as follows : The BOD level of Dongjin river ranged from 2.84 to 6.45 mg/L, which would be in a II$\sim$IV grade of the potable water criteria by Ministry of Environment. Averaged BOD level of downstream DJ6(After Jeongupcheon confluence) was 4.07 mg/L. The average COD level of Dongjin river ranged from 11.20 to 32.96 mg/L. COD level of DJ6 rapidly increased rapidly after the junction of Dongjin river and Jungupcheon because it showed the latter had relatively high pollution level. T-N content were significantly high in all sites of Dongjin river ranged through 4.16 to 5.84 mg/L. T-P examined high concentration than another thing point by 0.19 mg/L after Jeongupcheon confluence as BOD and COD. COD of main stream was expressed high concentration to dry season after rainy season. In case of T-P, pollution degree of dry season before rainy season appeared and examined that quality of water was worsened go by dry season after rainy season. The water quality of Dongjin river was deteriorated with inflow of Jungupcheon polluted by municipal and industrial sites near Jungup city.

Ecological Health Diagnosis of Sumjin River using Fish Model Metric, Physical Habitat Parameters, and Water Quality Characteristics (어류모델 메트릭, 물리적 서식지 변수 및 수질특성 분석에 의한 섬진강의 생태 건강성 진단)

  • Lee, Eui-Haeng;Choi, Ji-Woong;Lee, Jae-Hoon;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.2
    • /
    • pp.184-192
    • /
    • 2007
  • This study was to evaluate ecological health of Sumjin River during April${\sim}$June 2006. The ecological health assessments was based on the Index of Biological Integrity (IBI), Qualitative Babitat Evaluation Index (QHEI), and water chemistry. For the study, the models of IBI and QHEI were modified as 10 and 11 metric attributes, respectively. We also analyzed spatial patterns of chemical water quality over the period of $2002{\sim}2005$, using the water chemistry dataset, obtained from the Ministry of Environment, Korea. In Sumjin River, values of IBI averaged 33 (n= 12), which is judged as a "Fair${\sim}$Good" condition after the criteria of Barbour at al. (1999). There was a distinct spatial variation. Mean IBI score at Site 5 was estimated as 40, indicating a "Good" condition whereas, the mean at Site 3 was 23, indicating a "Poor${\sim}$Fair" condition. Habitat analysis showed that QHEI values in the river averaged 109 (n=6), indicating a "Marginal" condition after the criteria of Harbour et al. (1999). Values of BOD and COD averaged 1.3 mg $L^{-1}$ (scope: $0.9{\sim}1.8$ mg $L^{-1}$) and 3.3 mg $L^{-1}$ (scope: $2.8{\sim}4.0$ mg $L^{-1}$), respectively during the study. It was evident that chemical pollutions by organic matter were minor in the river. Total nitrogen (TN) and total phosphorus (TP) averaged 2.5 mg $L^{-1}$ and 0.067 mg $L^{-1}$, respectively, and the nutrients did not show large longitudinal gradients between the upper and lower reach. Overall, dataset of IBI, QHEI, and water chemistry suggest that river health has been well maintained, compared to other major watersheds in Korea and should be protected from habitat disturbance and chemical pollutions.

An Analysis of Suitable site of Constructed Wetland using High Resolution Satellite Image and GIS in Kyoung-An Stream (고해상도 위성영상과 GIS를 이용한 인공습지 적지 분석 -경안천을 대상으로-)

  • Koh, Chang-Hwan;Jin, Do;Ha, Sung-Ryong
    • Journal of Wetlands Research
    • /
    • v.10 no.2
    • /
    • pp.115-128
    • /
    • 2008
  • Various human activities such as the Urbanization and Industrialization are estimated the main factors to pollute the stream. Now days, numerous studies are carried out for managing non-point sources which have un-effect on water quality of streams by land-use and livestock. In case of Korea, a matter of concern that the management of Pal dang reservoir - the main water resources of the national capital region - has been occurring. Especially, large-scale constructed-wetlands are planned and constructed at the end of Kyoung-an stream. Additionally a lot of sewage treatment plants are newly installed and extended in this watershed. According to these efforts, water quality of Kyoung-an stream is predicted that would be improved. But the more detail and scientific analysis should be carried out for the water quality improvement, because, existing water quality improvement projects are not involved to analyze root of water quality deterioration and improvement plans. Therefore, this study aims to select suitable areas for constructed-wetlands and to calculate size of the constructed-wetlands for water quality improvement in Kyoung-an stream through the geographical pollutant distribution analysis and land-use pattern analysis by high resolution satellite image and suitable area analysis of constructed-wetlands by GIS(Geographic information system). The progress of this study is (1) to select maximum pollutant loaded area by geographical analysis based on water quality data, (2) to analyze land-use patterns using high resolution satellite image, (3) to select suitable areas of constructed-wetlands, (4) to calculate area and volume of chosen constructed-wetlands using GIS. Basically, sizes of constructed-wetlands are induced through the constructed-wetlands design index based on treatment ratio(provided by Korea Water Resources Corporation). As a result of this study, two areas are selected to construct constructed-wetlands. One of the area was $127,586m^2$ near by Yong-in sewage treatment plant, and the other area was $1,647m^2$ near by Ju-buk stream and Dae-dae stream.

  • PDF

Effects of Macrophytes on Budget of Matters in Lake Paldang (대형수생식물이 팔당호의 물질 수지에 미치는 영향)

  • Park, Hae-Kyung;Jung, Dong-Il;Byeon, Myeong-Seop
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.1 s.115
    • /
    • pp.85-92
    • /
    • 2006
  • To evaluate the primary production and nutrient uptake of macrophytes in Lake Paldang, this study investigate the vegetation areas of six dominant aquatic plants including Typha angustifolia, Zizania latifolia, Phragmites australis, Trapa japonica, Nelumbo nucifera and Savinia natans, and contents of carbon, nitrogen and phosphorus of each macrophyte. Total vegetation area of six dominant aquatic plants was 1.37 $km^2$. Among them, Typha angustifolia was the most wide-distributed species which occupied the 46.7% of total vegetation area. Littoral zone of South Han river had the largest vegetation area with 0.458 $km^2$, and North Han river, Kyungan river and confluence area in the order named. The results of the contents of carbon, nitrogen and phosphorus of macrophytes showed that the carbon contents of emergent macrophytes was higher than that of other life-forms. The nitrogen content of Salvinia natans, free-floating macrophyte was highest and that of Typha angustifolia, emergent macrophyte was lowest. The phosphorus content of Trapa japonica showed the highest content of phosphorus among six macrophytes and emergent macrophytes such as Zizania latifolia and Phragmites australis showed lower contents of phosphorus than other life-forms. The annual net primary production of macrophytes in Lake Paldang, 2004, was calculated as 758.4 ton C $yr^{-1}$ and the annual net nitrogen and phosphorus uptake of macrophyte was 16,921 kg $yr^{-1}$ and 1,841.0 kg P $yr^{-1}$ respectively. Comparing the total budget of organic carbon, nitrogen and phosphorus in Lake Paldang, the amount of primary production and nutrient uptake by macrophytes take a small portion in total budget implying macrophytes do not play an important role in budget of matters in river-type lake, Lake Paldang.

Sources of Alkylphenol Polyethoxylate and their Fate in the Central Nakdong River Basin (낙동강 중류 수계에 있어서 Alkylphenol Polyethoxylate의 오염원과 잔류특성)

  • Lee, Se-Han;Lee, Shun-Hwa;Lee, Chul-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.12
    • /
    • pp.1277-1284
    • /
    • 2005
  • Alkylphenol Polyethoxylate(APEs) and their metabolites were determined in the aquatic environment in the central Nakdong river basin. The concentrations of APE's ranged between $0.62{\sim}11.70\;{\mu}g/L$ from the Nakdong and the Kumho rivers, and were $70.00{\sim}212.50\;{\mu}g/L$ in the samples from the 3rd industrial complex stream and the Dalseo stream, which are both heavily polluted by industrial wastewater and domestic wastewater. The APEs revealed a removal rate of more than 87% by biodegradation and adsorption etc. in the wastewater treatment plant. Nonylphenol polyethoxylates(NPnEO) and Nonylphenol carboxylic acid(NPnEC) consisted of APE metabolites shifted from NP($n=4{\sim}10$)EO and NP($n=4{\sim}10$)EC to NP($n=1{\sim}3$)EO and NP($n=1{\sim}3$)EC or removed by the adsorption of activated sludge during the biological wastewater treatment process. Upper streams have a higher distributed rate of NP($n=7{\sim}10$)EO than water downstream. Continuous monitoring is necessary for non-point sources as well as point sources, such as a wastewater treatment plant. Effluent concentrations of nonylphenol(NP) in industrial wastewater and domestic wastewater averaged about 4.33 and $1.70\;{\mu}g/L$, respectively. In addition, the removal rate average was 90% in the wastewater treatment plant. NP concentrations in the rivers did not exceed $1.0\;{\mu}g/L$, which are prescribed by environmental risk concentration in the USA and Europe. However, NP required continuous monitoring, which detected over $0.1\;{\mu}g/L$ in all river areas.