• 제목/요약/키워드: 필기 인식

검색결과 314건 처리시간 0.022초

한글 필기체 영상 데이터베이스 PE92의 소개 (An Overview of Hangul Handwritten Image Database PE92)

  • 김대환;방승양
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1992년도 제4회 한글 및 한국어정보처리 학술대회
    • /
    • pp.567-575
    • /
    • 1992
  • 한글 문자인식 시스템을 개발하기 앞서 생각해야 할 것이 인식실험에 사용될 문자 데이타를 수집하는 것이다. 이 논문에서는 연구 개발자들에게 문자인식 실험에 필요한 충분한 데이타를 제공하며 필기체 문자 데이타를 표준화하여 문자인식 시스템 상호간의 성능을 객관적으로 평가하기 위하여 한글 필기체 문자 데이터베이스 PE92를 개발하였다. 여기서는 PE92 데이타베이스의 소개로서 먼저 PE92를 수집하는데 있어 고려사항들, 즉 필기자, 수집문자의 수, 수집용지의 규격, 데이타베이스의 저장, 데이타의 압축에 대하여 알아본다. 다음 PE92 데이타베이스의 규격을 알아본다.

  • PDF

전자계산기에 의한 필기체 한글 인식에 관한 연구 (A study on the Automatic Recognition of Hand Printed Hangeul patterns by the Computer)

  • 남궁재찬;김영건
    • 한국통신학회논문지
    • /
    • 제5권1호
    • /
    • pp.44-48
    • /
    • 1980
  • 본 논문에서는 필기체 한글인식을 위한 한 방법을 제안했다. 기본 자모를 대상으로 하였으며, 임의의 Pattern에 대하여 접합보상및 정형 Algorithm을 제안하므로써 본래의 표준 한글 pattern으로 정형화하였다. 인식에는 Tree grammar를 사용하였으며, 새로운 Parsing 방법을 제안하므로써 종래의 방법보다 처리를 간단화시켰으며 error를 감소시켰다. 제한된 필기체에 대하여는 매우 효과적이었으며 on line 필기체 인식에도 유용성이 있음을 보였다.

  • PDF

딥러닝에 의한 한글 필기체 교정 어플 구현 (An Implementation of Hangul Handwriting Correction Application Based on Deep Learning)

  • 이재형;조민영;김진수
    • 한국산업정보학회논문지
    • /
    • 제29권3호
    • /
    • pp.13-22
    • /
    • 2024
  • 현재 디지털 기기의 확산과 함께 일상에서 손으로 쓰는 글씨의 비중은 점점 줄어들고 있다. 키보드와 터치스크린의 활용도 증가에 따라 한글 필기체의 품질 저하는 어린 학생부터 성인까지 넓은 범위의 한글 문서에서 관찰되고 있다. 그러나 한글 필기체는 여전히 개인적인 고유한 특징을 포함하면서 가독성을 제공하는 많은 문서 작성에 필요하다. 이를 위해 본 논문에서는 손으로 쓴 한글 필기체의 품질을 개선하고, 교정하기 위한 목적의 어플 구현을 목적으로 한다. 제안된 어플은 CRAFT(Character-Region Awareness For Text Detection) 모델을 사용하여 필기체 영역을 검출하고, 딥러닝으로서 VGG-Feature-Extraction 모델을 사용하여 필기체의 특징을 학습한다. 이때 사용자가 작성한 한글 필기체의 음절 단위로 신뢰도를 인식률로 제시하고, 또한, 후보 폰트들중에서 가장 유사한 글자체를 추천하도록 구현한다. 다양한 실험을 통해 제안한 어플은 기존의 상용화된 문자 인식 소프트웨어와 비교할만한 우수한 인식률을 제공함을 확인할 수 있다.

분할기반 은닉 마르코프 모델과 다층 퍼셉트론 결합 영문수표필기단어 인식시스템 (A Segmentation-Based HMM and MLP Hybrid Classifier for English Legal Word Recognition)

  • 김계경;김진호;박희주
    • 한국지능시스템학회논문지
    • /
    • 제11권3호
    • /
    • pp.200-207
    • /
    • 2001
  • 본 논문에서는 분할기반 은닉 마르코프 모델(segmentation based hidden Markov model)과 다층 퍼셉트론 (multi-layer perceptron)을 결합한 영문수표 필기단어 (legal word) 인식시스템을 제안하였다. 가변길이의 필기체 영문 단어 분할결과를 인식할 수 있도록 은닉 마르코프 모델을 이용하여 명확한 분할기반 (explicit segmentation-based) 단어단위 (word level) 인식기를 구현하고 다층 퍼셉트론을 이용하여 내재적 분할기반 (implicit segmentation-based) 단어단위 인식기를 구현하였다. 그리고 이종(heterogeneous)의 두 인식기를 새로운 결합 확률추정방식에 따라 결합함으로서 상호 보완 능력을 극대화시킬 수 있는 영문수표 필기단어 인식시스템을 구현하였다. 제안한 시스템을 캐나다 콘코디아 대학의 CENPARMI 영문 수표 데이터베이스에 적용하여 실험해 본 결과 기존의 연구결과에 비해 비교적 우수한 인식성능을 얻을 수 있었다.

  • PDF

HMM 네트워크 기반의 한글 인식기를 위한 구조 특성열의 적용 (Application of Structure Code Sequence for HMM Network-Based Hangul Recognizer)

  • 하진영
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1998년도 제10회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.345-350
    • /
    • 1998
  • 온라인 필기 한글 인식 연구 중 HMM 네트워크를 기반으로 한 방법이 흘려 쓴 한글 인식에 있어서 우수한 성능을 보여주고 있다. 하지만, 또박또박 쓴 정서체 한글 인식에 대해서는 때때로 예측하지 못한 결과를 출력하기도 한다. 필기자가 정성 들여 필기했을 경우 보다 일관성 있는 인식 결과를 출력할 수 있는 것이 중요하다. 또한 계산 능력이 떨어질 수밖에 없는 휴대용 컴퓨터에서의 활용을 위해 인식 속도의 향상도 필요하다. 따라서 본 논문에서는 정서체 인식률 및 인식 속도 개선을 위해 16-방향 체인코드 대신 구조적 정보를 포함하는 새로운 코딩 방식을 제안하고자 한다.

  • PDF

대용량 오프라인 한글 글씨 영상 데이터베이스 KU-1의 설계 및 구축 (Design and Construction of a Large-set Off-line Handwritten Hangul Character Image Database KU-1)

  • 김대인;김상엽;이성환
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1997년도 제9회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.152-159
    • /
    • 1997
  • 최근 들어 인쇄체 문자 인식 기술의 발전에 힘입어 필기체 한글 인식에 관한 연구가 활발히 진행되고 있다. 인쇄체 문자와는 달리 자연스럽게 필기된 한글 글씨는 동일한 문자라 하더라도 같은 모양을 가지고 있다고 단정하는 것이 불가능할 정도로 필기자의 필기 유형에 따른 다양한 변형을 내포하고 있다. 따라서 효과적인 한글 글씨 인식기를 개발하기 위해서는 다양한 변형을 포함하는 대용량의 한글 글씨 영상 데이터베이스가 필수적이다. 본 논문에서는 시스템공학연구소 주관 국어 정보 베이스 개발 사업의 일환으로 고려대학교에서 구축 중인 오프라인 한글 글씨 영상 데이터베이스, KU-1에 대해 간략히 소개하고자 한다. 본 데이터베이스는 KS C 완성형 한글 사용 빈도순 상위 1,500자에 대하여 다양한 계층, 직업, 연령, 지역 분포를 고려한 1,000명 이상의 필기자가 정서체와 본인의 평소 자유 필체로 필기한 1,000벌의 명도 한글 글씨 영상으로 구성되어 있다.

  • PDF

필기습관 정보에 기반한 온라인 서명인식 (On-line Signature Identification Based on Writing Habit Information)

  • 성한호;이일병
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (B)
    • /
    • pp.322-324
    • /
    • 2003
  • 생체인식 기술은 현재까지 많은 발전을 거듭하고 있으며 국내에서도 연구는 물론 표준화작업 및 데이터 베이스 구축이 활발히 진행되고 있다. 생체인식은 신체의 여러 부분을 이용하는 방법과 습관에서 비롯된 특징을 이용하는 방법이 있는데, 본 연구에서는 이 중에서 개인의 필기습관 정보를 이용하여 인식하였다. 본 연구에서는 필기습관에 주목하여 서명하는 사람의 습관이 잘 드러나는 펜의 기울임과 눌림, 펜의 방위각도 둥의 성분이 표현되어지는 동적인 생채정보를 감지하고 특성을 추출할 수 있는 타블렛과 펜을 사용하여 서명정보를 추출한다. 이렇게 생성된 서명정보의 특징을 추출하기 위하여 패턴인식분야에 널리 활용하고 있는 주성분요소분석(PCA, Principal Component Analysis), 독립성분요소분석(ICA, Independent Component Analysis)기법에 적용하였다. 생성된 두 특징벡터 사이의 거리를 Euclidean Distance를 이용하여 구하고 Nearest Neighbor를 비교하여 인식률을 알아보고 교차인식(Cross Validation) 기법 중 하나인 Leave-One-Out 방법을 이용한 분류성능 측정을 통하여 데이터의 신뢰수준을 알아보았다.

  • PDF

제한된 필기글꼴을 이용한 휴대형 정보기기용 한영 온라인 문자인식에 관한 연구 (A Study on the On-line Recognition of Korean-English Characters Using Constrained Strokes for PDAs)

  • 홍성민;국일호;조원경
    • 한국통신학회논문지
    • /
    • 제26권4B호
    • /
    • pp.479-490
    • /
    • 2001
  • 본 논문에서는 제한된 필기 글꼴을 이용한 휴대형 정보기기용 온라인 문자 인식 알고리즘을 제안하였다. 한글과 영숫자를 동시에 사용하는 문자 인식은 애매성으로 인하여 인식율이 낮아지며, 이를 극복하기 위하여 모드 변환이나 영역 분리 등의 제약을 하게 된다. 본 논문에서 제안한 인식 알고리즘은 한글과 영문자, 숫자를 혼용하여 사용할 수밖에 없는 우리의 문자 환경에서 사용자의 평의성을 최대한 살려 입력 모드 전환이나 필기 영역 분리 등의 제약을 하지 않는 단일 알고리즘이다. 또한 역추적에 의하여 인식 과정에서 발생할 수 있는 미의식 또는 오인식을 보정할 수 있도록 한다. 제안한 알고리즘은 전체 알고리즘의 크기가 작으며 계산량이 적어서 메모리와 속도 등의 성능에 있어서 자원의 제약을 가질 수밖에 없는 초소형 휴대형 정보기기의 입력 장치로서 적합하도록 연구하였다. 실험 결과 영숫자 98%, 한글 97%의 인식율을 얻어 유용성을 확인하였다.

  • PDF

대용량 온라인 필기 한자 인식을 위한 구조 코드 및 HMM 기반의 클러스터링 방법 (Clustering Method based on Structure Code and HMM for Huge Class On-line Handwritten Chinese Character Recognition)

  • 김광섭;하진영
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2008년도 한국컴퓨터종합학술대회논문집 Vol.35 No.1 (C)
    • /
    • pp.472-477
    • /
    • 2008
  • 본 논문에서는 은닉 마르코프 모델(HMM)을 기반한 대용량의 필기 한자 인식의 문제점인 시스템 리소스의 한계와 인식에 소요되는 많은 시간을 단축하기 위해 구조코드와 HMM에 최적화 된 클러스터링 알고리즘을 제안한다. 제안하는 클러스터링 알고리즘의 기본 개념은 훈련된 HMM를 대상으로 하고, HMM의 파라미터 수가 동일한 클래스에 대해서 클러스터를 구성하는 것이다. 또한 인식에 소요되는 시간을 줄이기 위해 2단계 클러스터모델 구조를 사용한다. 총 98,639 종류의 일본 한자를 대상으로 한 실험에서 평균 0.92 sec/char 인식 속도와 30순위 후보인식률 96.03%를 보임으로서 대용량 필기 한자 인식을 위한 좋은 방안이 될 것이라 기대한다.

  • PDF

오프라인 필기체 숫자인식을 위한 특징 비교 및 다수결 투표를 사용한 성능향상 방안 (Performance Comparison of Various Features for Off-line Handwritten Numerals Recognition and Suggestion for Improving Recognition rate for Using Majority Voting)

  • 권영일;하진영
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 가을 학술발표논문집 Vol.30 No.2 (2)
    • /
    • pp.595-597
    • /
    • 2003
  • 오프라인 필기체 숫자 인식에서 다양한 변형을 잘 흡수 할 수 있는 효율적인 특징을 찾는 것은 중요한 일이며, 본 논문에서는 이를 위해 다양한 단일특징들을 구현 하였으며, 단일 특징만으로는 만족 할 만한 성능을 기대하기 어렵기 때문에 다양한 단일 특징을 복합특징으로 구성하였다. 또한 오프라인 필기체 숫자인식에서 좋은 성능을 발휘하는 것으로 알려진 신경회로망으로 학습을 하였으며, 인식의 성능을 개선시키기 위해 효과적인 특징을 조합하여 하나의 단일 신경회로망들을 구성하고 그것을 다시 복합신경회로망으로 구성하여 성능을 실험 함으로서 성능의 향상을 볼 수 있었고, 신경회로망에 더하여 성능을 개선시키기 위해 신경회로망을 보완 할 수 있는 다수결 투표 방법을 사용하였다. 본 논문에서는 신경회로망의 인식 결과를 비교 분석하여 최적의 특징을 찾아 낸 결과를 2차 다수결 투표를 사용하여 인식하는 방법을 제안한다. 제안된 방식의 성능을 검증하기 위해서 Concorida 대학교의 CENPARIMI 숫자 데이터 베이스를 가지고 인식을 수행 하였으며. 그 결과 97.40%의 정인식률과 0.75%의 오인식률 그리고 1.85%의 거부률을 보였다.

  • PDF