• Title/Summary/Keyword: 피폭방사선량

Search Result 497, Processing Time 0.026 seconds

Radiation Exposure Dose on Persons Engaged in Radiation-related industries (방사선관계종사자의 피폭선량에 대한 연구)

  • Choi, Gui-Nam;Jeon, Ju-Seob;Kim, Yong-Wan
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.1
    • /
    • pp.27-37
    • /
    • 2012
  • From Jan 2002 to June 2011, we evaluated 4419 cases of radiation dose of 323 radiation related individuals consist of physician, nurses, technician and others in local C national university hospital. On annual analysis, year 2003 ranked the highest and 2007 the lowest dose. Dose was relatively higher in male than female. Dose was highest in 30s on age basis analysis. Dose was high in order of physician, nurse, and technician. Average radiation dose was high in order of cardiovascular center, radiologic intervention ceter, radiologist individuals, and fluoroscopic contrast study room. Those doses did not excess the standard dose recommended by ICRP (20mSv/year). However unlike average dose, there are wide variations of dose in individuals. Therefore radiation related workers should do one's best in personal radiation exposure dose management for achievement of minimum dose of radiation.

Study on The Planning and Operation of Training Education in Radiologic Science for Reduced x-ray Exposure (방사선(학)과 실습교육에서 X선 피폭 감소를 위한 운영방법에 대한 연구)

  • Kil, Jong-Won;Park, Jung-Ho;Kim, Yong-Gwon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.12
    • /
    • pp.174-179
    • /
    • 2014
  • In this study, we measure the radiation dose for every experiments performed during the training education in radiologic science and estimate the radiation dose to each participant in the training education to propose a safe curriculum including operation of the training education. In this paper, we optimized the three parameters and the results show the dramatically reduced radiation dose to each participant. The proposed arrangement of the subjects and operation of the training education will be very helpful to reorganize the curriculum and the subject operation and will protect the students from the radiation dose.

Internal Dose Assessment of Worker by Radioactive Aerosol Generated During Mechanical Cutting of Radioactive Concrete (원전 방사성 콘크리트 기계적 절단의 방사성 에어로졸에 대한 작업자 내부피폭선량 평가)

  • Park, Jihye;Yang, Wonseok;Chae, Nakkyu;Lee, Minho;Choi, Sungyeol
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2
    • /
    • pp.157-167
    • /
    • 2020
  • Removing radioactive concrete is crucial in the decommissioning of nuclear power plants. However, this process generates radioactive aerosols, exposing workers to radiation. Although large amounts of radioactive concrete are generated during decommissioning, studies on the internal exposure of workers to radioactive aerosols generated from the cutting of radioactive concrete are very limited. In this study, therefore, we calculate the internal radiation doses of workers exposed to radioactive aerosols during activities such as drilling and cutting of radioactive concrete, using previous research data. The electrical-mobility-equivalent diameter measured in a previous study was converted to aerodynamic diameter using the Newton-Raphson method. Furthermore, the specific activity of each nuclide in radioactive concrete 10 years after nuclear power plants are shut down was calculated using the ORIGEN code. Eventually, we calculated the committed effective dose for each nuclide using the IMBA software. The maximum effective dose of 152Eu constituted 83.09% of the total dose; moreover, the five highest-ranked elements (152Eu, 154Eu, 60Co, 239Pu, 55Fe) constituted 99.63%. Therefore, we postulate that these major elements could be measured first for rapid radiation exposure management of workers involved in decommissioning of nuclear power plants, even if all radioactive elements in concrete are not considered.

Evaluation of Usability and Radiation Dose Measurement Using Personal Radiation Exposure Dosimeter (방사선 개인피폭선량계를 이용한 피폭선량 측정 및 유용성 평가)

  • Kang, In-Seog;Ahn, Sung-Min
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.11
    • /
    • pp.864-870
    • /
    • 2014
  • To propose a basis for the selection of personal dosimeters to measure radiation dose administration of radiation workers as a way to evaluate the usefulness dosimeter. For the dosimetry of the radiation workers 2012, during 1 year, 30 were radiation workers to measure personal dose. By personal exposure is measured cumulative dose, is investigated the performance of the TLD, PLD, OSLD. And comparing the measured value of each dosimeter dose and analyzed. Medical institutions, inspection work and quarterly confirmed the cumulative exposure dose of radiation workers. Using DAP and Ion-Chamber, to measure to compare TLD, PLD, OSLD dosimeter performance. A comparison of the directly through the X-ray dosimeter and The absolute value of the Ion-Chamber, OSLD more similar than in the TLD and PLD showed the dose values so the excellent ability to measure the results. Also in radiation generating area dose of radiation workers is higher than that in OSLD. Consequently, in terms of the individual exposure management OSLD is appropriated and beneficial than others.

Reading and Influence of Personal Dose Meter in University Hospital C (C 대학병원의 개인선량계 판독과 영향)

  • Lee, Joo-Ah
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.3
    • /
    • pp.357-363
    • /
    • 2022
  • This study aims to improve the safety inspection awareness of occupational exposure and help radiation safety management by analyzing radiation exposure doses by occupational type of radiation related-workers and radiation workers. Radiation-related workers and radiation workers were classified into three occupations (radiological technologist, doctors, and nurses). A nominal risk coefficient based on ICRP 103 was used to calculate the probability of causing side effects of the lungs due to exposure doses. As a result of analyzing the exposure dose of all workers for one year, the exposure dose of radiological technologist among radiation-related workers was 1.63 ± 2.84 mSv, doctors 0.12 ± 0.22 mSv, and nurses 0.59 ± 1.08 mSv. The one-year deep dose for radiation workers was 2.44 ± 3.30 mSv for radiological technologists, 0.19 ± 0.26 mSv for doctors, and 0.12 ± 0.00 mSv for nurses. Due to this dose, the probability of causing side effects in the lungs was 1.2 per 100,000 radiological technologist, 0.096 doctors, and 0.06 nurses. In this study, it is believed that the probability of side effects on lungs by occupation of radiation exposure dose will be studied and used as useful data for radiation safety management in relation to probabilistic effects in the future.

Application of the Two-Dosimeter Algorithm for Effective Dose Evaluations based on ICRP Publication 103 (ICRP 103 방사선방호 체계 하에서 유효선량 평가를 위한 Two-Dosimeter Algorithm의 적용방안)

  • Kim, Hee-Geun;Kong, Tae-Young
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.3
    • /
    • pp.154-159
    • /
    • 2011
  • To evaluate the radiation exposure of workers participating in task where high radiation exposure is expected, two-dosimeter is typically provided radiation workers, one on the chest and the other on the back, at Korean nuclear power plants (NPPs). In a previous study, the NCRP (55:50) algorithm was selected as the optimal two-dosimeter algorithm (TDA) with various field tests and this TDA has been applied to all Korean NPPs since 2006. In 2007, the International Commission on Radiological Protection (ICRP) published the new ICRP recommendation, ICRP 103, which provides the revised weighting factors for both radiation and tissues and the new reference phantom. In this study, the applicability of current NCRP (55:50) algorithm at Korean NPPs for ICRP 103 was analyzed. As a result, it was found that the NCRP (55:50) algorithm is still effective to estimate the effective dose of workers under ICRP 103.

Assessment of Thyroid Dose Evaluation Method by Monitoring of I-131 Concentration in Air (공기중 I-131 농도 감시에 의한 갑상선 피폭 평가법의 적용성)

  • Lee, Jong-Il;Seo, Kyung-Won
    • Journal of Radiation Protection and Research
    • /
    • v.19 no.1
    • /
    • pp.69-80
    • /
    • 1994
  • The TCMI(Three-Compartment Model for iodine) computer code has been developed, which is based on the three-compartment model and the respiratory model recommended in ICRP publication 54. This code is able to evaluate the thyroid burden, dose equivalent, committed dose equivalent and urinary excretion rate as time-dependent functions from the input data: working time and the radioiodine concentration in air. Using the TCMI code, the time-dependent thyroid burdens, the thyroid doses and the urinary excretion rates were calculated for three specific exposure patterns : acute, chronic and periodic. Applicability as an internal dose evaluation method has been assessed by comparing the results with some operational experiences. Simple equations and tables are provided to be used in the evaluation of the thyroid burden and the resulting doses for given I-131 concentration in air and the working time.

  • PDF

Characterization of Radiation Field in the Steam Generator Water Chambers and Effective Doses to the Workers (증기발생기 수실의 방사선장 특성 및 작업자 유효선량의 평가)

  • Lee, Choon-Sik;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.4
    • /
    • pp.215-223
    • /
    • 1999
  • Characteristics of radiation field in the steam generator(S/G) water chamber of a PWR were investigated and the anticipated effective dose rates to the worker in the S/G chamber were evaluated by Monte Carlo simulation. The results of crud analysis in the S/G of the Kori nuclear power plant unit 1 were adopted for the source term. The MCNP4A code was used with the MIRD type anthropomorphic sex-specific mathematical phantoms for the calculation of effective doses. The radiation field intensity is dominated by downward rays, from the U-tube region, having approximate cosine distribution with respect to the polar angle. The effective dose rates to adults of nominal body size and of small body size(The phantom for a 15 year-old person was applied for this purpose) appeared to be 36.22 and 37.06 $mSvh^{-1}$) respectively, which implies that the body size effect is negligible. Meanwhile, the equivalent dose rates at three representative positions corresponding to head, chest and lower abdomen of the phantom, calculated using the estimated exposure rates, the energy spectrum and the conversion coefficients given in ICRU47, were 118, 71 and 57 $mSvh^{-1}$, respectively. This implies that the deep dose equivalent or the effective dose obtained from the personal dosimeter reading would be the over-estimate the effective dose by about two times. This justifies, with possible under- or over- response of the dosimeters to radiation of slant incidence, necessity of very careful planning and interpretation for the dosimetry of workers exposed to a non-regular radiation field of high intensity.

  • PDF

A Preliminary Establishment of Dose Constraints for the Member of Public Taking into Account Multi-unit Nuclear Power Plants in Korea (국내 복수호기 원전 운영을 고려한 일반인 선량제약치 설정에 대한 고찰)

  • Kong, Tae-Young;Choi, Jong-Rack;Son, Jung-Kwon;Kim, Hee-Geun
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.3
    • /
    • pp.129-137
    • /
    • 2012
  • In the 2007 recommendation, the ICRP evolves from the previous process-based system of practices and intervention to the system based on the characteristics of radiation exposure situation. In addition, ICRP recommends the application of source-related dose constraints under the planned exposure situation as a tool for the optimization of protection to workers and the member of public. In this study, the analysis of radioactive effluents from Korean nuclear power plants and the public dose assessment were conducted in reference with the use of dose constraints. Finally, the measure to implement the dose constraints for the member of public was suggested taking into account multi-unit reactors operating at a single site in Korea.