• Title/Summary/Keyword: 피트라

Search Result 541, Processing Time 0.032 seconds

Impact of Pre-planting NO3:NH4 Ratios in Root Media on the Growth of Tomato Plug Seedlings (혼합상토에 기비로 혼합된 NO3:NH4 비율이 토마토 플러그 묘 생장에 미치는 영향)

  • Sung, Jwa Kyung;Lee, Nu Ri;Choi, Jong Myung
    • Horticultural Science & Technology
    • /
    • v.34 no.5
    • /
    • pp.727-735
    • /
    • 2016
  • This research was conducted to investigate the influence of various pre-planting $NO_3:NH_4$ ratios in the coir dust+peatmoss+perlite (3.5:3.5:3, v/v/v) medium on the growth of tomato plug seedlings (cv. Dotaerang Dia), changes in chemical properties of root media, and tissue nutrient contents. With the fixation of N concentration to $300mg{\cdot}L^{-1}$, the $NO_3:NH_4$ ratios were adjusted to 100:0, 73:27, 50:50, 27:73, 0:100. Then, root media containing various $NO_3:NH_4$ ratios and equal concentration of other essential nutrients were filled into 50-cell plug trays and the seeds of 'Dotaerang Die' tomato were sown. The investigation of seedling growth and tissue analysis for mineral nutrient contents based on the dry weight of above-ground tissue were conducted 6 weeks after sowing. As seedlings grew, the EC decreased quickly and pH increased gradually in the all treatment media. The plant height, fresh weight and dry weight of seedlings in the treatment of 50:50 ($NO_3:NH_4$) were 29.0 cm, 13.7 g, and 1.21 g, respectively, which were the highest among treatments tested. However, the seedlings in the treatment of 0:100 ($NO_3:NH_4$) had 26.5 cm, 11.2 g, and 0.92 g in plant height, fresh weight and dry weight, respectively. These were the poorest among the treatments tested. The tissue contents of N were 2.77 to 3.22% in all the treatments. The treatment of 27:73 ($NO_3:NH_4$) had the highest contents of Fe, Mn and Zn and that of 0:100 ($NO_3:NH_4$) had the lowest contents of Mg, Na, Cu, Mn and Zn among the treatments tested. The results indicate that $NH_4$ ratio should be lower than 50% in the coir dust+peatmoss+perlite (3.5:3.5:3, v/v/v) medium for seedling growth of tomato and the optimum ratio will be used to draw up guide lines for plug seedling production.

Growth of Chinese Cabbage Plug Seedlings as Influenced by Various Pre-planting Nitrogen Concentrations in Inert Media (혼합상토에 기비로 혼합된 질소 농도가 배추 플러그묘 생장에 미치는 영향)

  • Sung, Jwa Kyung;Lee, Nu Ri;Choi, Jong Myung
    • Horticultural Science & Technology
    • /
    • v.34 no.4
    • /
    • pp.616-625
    • /
    • 2016
  • This research was conducted to investigate the optimum level of nitrogen incorporated during formulation of root media as pre-plant fertilizer on the growth of plug seedlings of 'Bool-am No.3' Chinese cabbage. A root medium was formulated by blending peatmoss:coir dust:perlite at a ratio of 3.5:3.5:3.0 (v/v/v). The nitrogen was incorporated in the seven treatments at a rate of 0, 100, 250, 500, 750, 1,000, and $1,500mg{\cdot}L^{-1}$ during the root medium formulation. The concentrations of other essential nutrients except nitrogen were controlled to equal in all treatments. Then, the root medium was packed into 72-cell plug trays and seeds were sown. The growth measurements as well as tissue and soil solution analysis for nutrients were conducted 2 and 4 weeks after seed sowing. As seedlings grew, the pH in the extracted solution of all treatments tended to decrease. The decreases in the treatments of high N concentrations were more severe than those with low N, but the differences among treatments were not statistically significant. The differences of EC in extracted solution of root media among treatments were sizable until week 3, but the differences began to lessen and the EC decreased in all treatments after week 4. Growth of the aerial parts of plug seedlings at 2 weeks after sowing were highest in the $100mg{\cdot}L^{-1}$ and lowest in the $1,500mg{\cdot}L^{-1}$ treatments, but those at 4 weeks after sowing were highest in the $500mg{\cdot}L^{-1}$ and lowest in the $0mg{\cdot}L^{-1}$ treatments among all treatments tested. The tissue N content was highest and lowest in the treatments of 250 and $1,000mg{\cdot}L^{-1}$, respectively, when tissues were harvested at 4 weeks after sowing and analysed based on the dry weight of above-ground tissue. The contents of micronutrients were the highest in the 1,000 and $1,500mg{\cdot}L^{-1}$ treatments among all treatments. The results shown above indicate that the $250mg{\cdot}L^{-1}$ of pre-plant N and elevation of post-plant N concentration to above $100mg{\cdot}L^{-1}$ are suitable for raising plug seedlings of Chinese cabbage using inert media.

Impact of Pre-planting NH4+:NO3- Ratios in Inert Media on the Growth of Chinese Cabbage Plug Seedlings (혼합상토에 기비로 혼합된 질소의 NH4+:NO3- 비율이 배추의 플러그 묘 생장에 미치는 영향)

  • Sung, Jwa Kyung;Lee, Nu Ri;Choi, Jong Myung
    • Horticultural Science & Technology
    • /
    • v.34 no.5
    • /
    • pp.736-745
    • /
    • 2016
  • This research was conducted to evaluate the impact of various pre-planting $NH_4{^+}:NO_3{^-}$ ratios on the growth of plug seedlings of 'Bool-am No.3' Chinese cabbage. With fixation of the pre-planting N concentrations to $300mg{\cdot}kg^{-1}$ in a peatmoss+coir dust+perlite (3.5:3.5:3, v/v/v) medium, the $NH_4{^+}:NO_3{^-}$ ratios were varied to 0:100, 27:73, 50:50, 73:27, 100:0. Then, the each of root media containing various ratios of $NH_4{^+}:NO_3{^-}$ as well as equal concentrations of other essential nutrients was packed into 72-cell plug trays. After seeds of 'Bool-am No.3' Chinese cabbage were sown, the seedling growths were measured 2 and 4 weeks after sowing. The weekly analysis of root media and end-crop tissue analysis for mineral nutrients 4 weeks after seed sowing were also conducted. As the seedlings grew up, the pH of the root media increased, however ECs in all treatments of $NH_4{^+}:NO_3{^-}$ ratios decreased. The concentrations of K, Ca and Mg in root media were higher in the treatments of $NH_4{^+}:NO_3{^-}$ (100:0) and $NH_4{^+}:NO_3{^-}$ (73:27) than those of $NH_4{^+}:NO_3{^-}$ (0:100) and $NH_4{^+}:NO_3{^-}$ (27:73) 2 weeks after seed sowing. But the concentrations of K, Ca, Mg and Zn were get lowered in all treatments and the differences among treatments were not significant 4 weeks after sowing. The highest $NH_4{^+}$ and lowest $NO_3{^-}$ concentrations of the root media were observed in the $NH_4{^+}:NO_3{^-}$ (100:0) among all treatments. Contrary to these, the treatment of $NH_4{^+}:NO_3{^-}$ (0:100) had the lowest $NH_4{^+}$ and highest $NO_3{^-}$ concentrations. The seedling growth in terms of fresh and dry weights of aerial part were the highest in the treatment of $NH_4{^+}:NO_3{^-}$ (23:73) at 2 weeks after sowing and those of $NH_4{^+}:NO_3{^-}$ (50:50) at 4 weeks after sowing. The survival rate of seedlings in $NH_4{^+}:NO_3{^-}$ (100:0) treatment were 19% and the growth of aerial part 4 weeks after sowing was the poorest among all treatments tested. The results mentioned above indicate that the pre-planting $NH_4{^+}$ ratio in inert media should not exceed 25% in plug stage 1 through 3 (until 2 true leaf development) and 50% in plug stage 4 (after 2 true leaves to transplant).

Performance of Seedling Grafts of Tomato as Influenced by Root Medium Formulations and Leaching Fractions in Irrigation or Fertigation (혼합상토 조성과 관수 또는 관비시 배액률이 토마토 접목묘 생장에 미치는 영향)

  • Choi, Jong Myung
    • Journal of Bio-Environment Control
    • /
    • v.23 no.3
    • /
    • pp.235-243
    • /
    • 2014
  • This research was conducted to investigate the influence of leaching fractions (LF) in each irrigation or fertigation on plant growth and changes in chemical properties of root media during the production of seedling grafts of tomato. Two root media containing Sphagnum peat moss plus vermiculite (5:5, v/v, PV) and coir dust plus vermiculite (5:5, v/v, CV) were formulated and pre-planting fertilizers were incorporated during formulation. Then, each medium was packed into 50 cell (volume 33 cc) and 105 cell (volume 18 cc) trays and the rootstock (cv. J3B Strong) and scion (cv. Sunmyung) were grown, respectively. The seedlings were grafted at 31 days after sowing and then the cut seedling grafts (Sunmyung scion/J3B Strong rootstock) were planted into 50 cell plug trays containing each of the two root media. After induction of the graft union and new adventitious roots for 7 days, the seedling grafts were fed with fertilizer solution once a week containing 4 different N concentrations (0, 50, 100, $200mg{\cdot}L^{-1}$). When determined after 31 days from seed sowing, the highest fresh weights of the root stock seedlings were obtained with 0.75 LF in PV (8.96g/seedling) and CV (7.11g/seedling) mixes. The EC of the both mixes were 0.93 and $1.09dS{\cdot}m^{-1}$, respectively. The fresh weights of the scion seedlings 31 days after seed sowing were 4.29g with 0.50 LF in the PV and 3.13g with 0.50 LF in the CV. The root medium ECs of the two treatments were 0.76 and $1.34dS{\cdot}m^{-1}$, respectively. Fresh weights of the seedling grafts grown for 31 days were greatly influenced by post-planting fertilizer concentrations. The heavier plants were obtained in $100mg{\cdot}L^{-1}$ N treatment than any other treatments in same mixes. The substrate ECs in these two treatments were 0.98 and $1.93dS{\cdot}m^{-1}$, respectively, indicating that the desirable range of soluble salts in soil extracts is higher in the CV mix than the PV mix. Results of this study suggest that optimum EC range is different in each medium and LF need to be adjusted differently for each root medium to produce high quality seedling grafts of tomato.

Establishment of Application Level for the Proper Use of Organic Materials as the Carbonaceous Amendments in the Greenhouse Soil (시설재배지 유기물자원 적정 시용기준 설정)

  • Kang, Bo-Goo;Lee, Sang-Young;Lim, Sang-Cheol;Kim, Young-Sang;Hong, Soon-Dal;Chung, Keun-Yook;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.248-255
    • /
    • 2011
  • For the environmental friendly soil management on the cultivation of crops in the greenhouse, organic materials, such as the by product-fertilizer derived from livestock manure, rice straw, mushroom media, rice hulls, wood sawdust, and cocopeat, were used as carbon sources adjusting the ratio of carbon to nitrogen to 10, 20, and 30 based on the inorganic soil N. In each C/N ratio of greenhouse soil, watermelon was cultivated in the greenhouse as crop for experiment for the spring and summer of the year and the experimental results were summarized as follows. The concentration of T-C in the organic materials applied were between $289{\sim}429g\;kg^{-1}$, In the C/N ratio of 10, using watermelon as the crop cultivated during the second half of the year in the greenhouse soil, the $NO_3$-N and EC were reduced by 21 to 37%, and 26 to 33%, respectively, except the by product-fertilizer from livestock manure, compared to the soil $NO_3$-N and EC used in the experiment. After the watermelon was cultivated in soils that C/N ratios were controlled as 10, 20, and 30 with wood sawdust adding as carbon sources in the three soils with the different EC values, EC values of the soils were reduced by 33, 42, and 39%, respectively, compared to the soil EC used in the experiment. The weight of watermelon was 10.1-13.4 kg per one unit, and, of the three soils with different EC values. In the soils with three different EC values controlled at C/N ratio of 20, the weight of watermelon was good. The degree of sugar of watermelon were 11.8 to 12.3 Brix, which means that the difference between the treatments was not significant. In conclusion, the C/N ratio of 20 controlled by the proper supply of organic materials according to the representative EC values shown in the greenhouse soils was optimal condition enough to maintain the soil management for the organic culture with the proper nutrient cycling.

Effect of Different Soil Water Potentials on Growth Properties of Northern-Highbush Blueberry (토양수분포텐셜이 북부형 하이부쉬 블루베리의 생육에 미치는 영향)

  • Kim, Hong-Lim;Kwack, Yong-Bum;Kim, Hyoung-Deug;Kim, Jin-Gook;Choi, Young-Hah
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.161-167
    • /
    • 2011
  • The soil moisture has an important effect on growth and development of highbush blueberry (HB), mainly because the root system, devoid of root hairs, is superficial. Moreover, the texture and organic matter content of Korean soil is different from the main producing counties, such as USA and Canada. To facilitate the growth and development of HB and long-term maintenance of productivity, the research related to soil moisture condition in Korea should be the priority. This study was performed to investigate the growth properties of the HB in various soil moisture conditions in order to determine the irrigation trigger point and optimum soil water potential. The texture of soil used in this experiment was loam. For the experiments, the soil was mixed with peatmoss at a rates 30% (v/v). Irrigation was scheduled at -3, -4, -5, -8, -15 and -22 kPa soil water potential then investigated leaf macronutrient, bush growth, and fruit properties. The leaf K content of HB showed the same trend in the soil water potential, but Leaf P and Mg content was highest in -5 and -22 kPa, respectively. The productivity and growth amount of HB showed the peak at the range of -4~-8 kPa as normal distribution pattern, and greatly decreased at above -15 kPa. Total dry weight and Cane diameter were highest at -4 kPa, plant width, fruit weight and yield were highest at -5 kPa, and plant height, cane number and shoot tension were highest at -8 kPa. Soluble solids content showed same trend in the soil water potential, but titratable acidity, anthocyanins and total polyphenols were not significantly different. Therefore, the optimal soil water potential for the development and a maximum production of HB were a range of -4~-8 kPa, and the recommended ideal irrigation trigger point was within -15 kPa.

Growth of Radish Plug Seedlings as Influenced by Various Pre-planting Nitrogen Levels in Inert Media (기비로 혼합된 질소 수준이 무 플러그 묘 생장에 미치는 영향)

  • Sung, Jwa Kyung;Park, Myong Sun;Choi, Jong Myung
    • Journal of Bio-Environment Control
    • /
    • v.26 no.3
    • /
    • pp.201-207
    • /
    • 2017
  • Objective of this research was to investigate the influence of pre-plant nitrogen levels in root media on plug seedling growth of radish cv. Soksungbommu. To achieve the research purpose, a root medium, the mixture of perlite, coir dust, and peatmoss (volume percentage of 30:35:35) was formulated and the N levels incorporated during mixing were controlled to 0, 100, 250, 500, 750, 1,000, and $1,500mg{\cdot}L^{-1}$. Then, the seeds were sown into 72-cell plug trays in which the root medium was packed. The measurements of growth and analysis of tissue and root media were conducted 2 and 4 weeks after sowing. Elevation of pre-plant N levels raised EC and turned down pH of root media. But, as seedling grew, the pH rose and EC get lowered in all treatments. The EC as well as $NH_4-N$ and $NO_3-N$ concentrations of root media declined gradually until week 2, but those declined sharply between weeks 2 to 4. The seedling growth 2 weeks after sowing showed quadratic response to pre-plant N levels with the highest growth in $250mg{\cdot}L^{-1}$ treatment and lagging growth in the treatments of lower or higher N levels than $250mg{\cdot}L^{-1}$. The seedling growth 4 weeks after sowing showed also quadratic response with the highest growth in $500mg{\cdot}L^{-1}$ treatment. The tissue N contents were get higher and those of K, Ca, and Mg were get lower as pre-plant N levels were elevated. Above results suggest that lower than $250mg{\cdot}L^{-1}$ in pre-plant N levels is optimistic for growth of plug seedling and avoidance of toxic injury in very young stage.

Lowered Substrate pH Reduced the Bicarbonate Injury during Vegetative Growth of 'Ssanta' Strawberry (혼합상토의 pH 저하가 영양생장 중인 '싼타' 딸기의 중탄산 피해 경감에 미치는 영향)

  • Lee, Hee Su;Cheung, Jong Do;Choi, Jong Myung
    • Journal of Bio-Environment Control
    • /
    • v.26 no.2
    • /
    • pp.115-122
    • /
    • 2017
  • Objective of this research was to investigate the influence of lowered substrate pH on the reduction of bicarbonate injury in the vegetative growth of 'Ssanta' strawberry. The acid substrate was formulated by mixing sphagnum peat moss with pine bark (5:5, v/v) and the pH, EC, and CEC of the substrate were 4.07, $0.46dS{\cdot}m^{-1}$, and $91.3cmol^+{\cdot}kg^{-1}$, respectively. To adjust the pH of acid substrate, various amount of dolomitic lime [$CaMg(CO_3)_2$] were incorporated with the rate of 0 (untreated), 1, 2, 3, and $4g{\cdot}L^{-1}$. Then, mother plants were transplanted and grown with fertilizer solution containing $240mg{\cdot}L^{-1}$ of the $HCO_3{^-}$ and equal concentrations of essential nutrients to Hoagland solution. In growth of 'Ssanta' strawberry, fresh weight of mother plants were the highest in the treatment of $2g{\cdot}L^{-1}$ dolomitic lime such as 102.1 g followed by 94.7 g in $1g{\cdot}L^{-1}$, 91.2 g in $3g{\cdot}L^{-1}$, 75.7 g in $0g{\cdot}L^{-1}$ and 72.3 g in $4g{\cdot}L^{-1}$ treatments. The dry weight showed a similar tendency to fresh weight. At 140 days after transplanting, 5.8, 9.8, 11.8, 8.8, and 5.0 daughter plants were derived from each of the mother plants in the treatments of 0, 1, 2, 3, and $4g{\cdot}L^{-1}$ dolomitic lime, respectively. The highest occurrence of daughter plants were observed in the treatments $2g{\cdot}L^{-1}$ dolomitic lime. The substrate pH and bicarbonate concentration of 'Ssanta' strawberry seedlings in the 1 and $2g{\cdot}L^{-1}$ dolomitic lime treatments were maintained at a proper range such as 5.6 to 6.2. The micro-nutrient contents of above ground tissue in mother plants were the highest in $2g{\cdot}L^{-1}$ and the lowest in $4g{\cdot}L^{-1}$ dolomitic lime treatment. The above results indicate that incorporation rate of dolomitic lime in acid substrate with the pH of around 4 is $2g{\cdot}L^{-1}$ to raise the 'Ssanta' strawberry in propagation.

Effect of Reused Cocopeat Substrate on Growth and Yield of Summer-cultivated Paprika in EC-based Recycling Hydroponic Cultivation (EC기준 순환식 수경재배에서 코크피트배지 재사용이 여름작형 파프리카의 생육 및 수량에 미치는 영향)

  • Jang, Dong-Cheol;Choi, Ki-Young;Yeo, Kyung-Hwan;Kim, II-Seop
    • Journal of Bio-Environment Control
    • /
    • v.26 no.2
    • /
    • pp.100-107
    • /
    • 2017
  • This experiment was carried out to analyze the effects of substrate reuse on the growth and yield of summer paprika in cyclic hydroponics. The test group was divided into a new coco slab, one year reused coco slab two year reused coco slab based on 30% nutrient solution reuse, and was performed from April 18 to November 31, 2016 for 30 weeks. As a result, plant height of early growth was that the 2 year reused slab was longer than the new slab but the final growth period was 56.58 cm shorter. First group flower position was that reused slab was shorter by 2.92 cm than the new slab and the second group flower position was 0.31 cm long. The relative internode length of early growth, when the reused slab was used, the imbalance in the late growth stage was increased compared with the use of the new slab. The number of growth nodes in the 1 and 2 year reused slab was the smallest with 27.4 nodes. However, the number of harvested nodes did not show the difference in the test group, and the ratio of harvested that the 2 year reused slab was the highest at 26.8%. The ratio of unmarketable fruit tended to increase as the growth progressed. Fresh weight was 227.7g for new slab, 219.2g for 2 year reused slab and 21.2g for 1 year reused slab. The dry weight of the new slab increased with the reuse of the slab. It was 17.13g for new slab, 18.26g for 1 year reused, and 19.28g for 2 year reused. The average water content of the entire growth period was smaller as the slab was reused, and the 1 year reused slab was about 20g less than the 2 year reused slab. This trend was steadily occurring throughout the entire growing season. Especially, the reused slab for 1 year was less than 60g after 3 groups compared to other test groups. In conclusion, If will control seriously occurrence of unmarketable fruits by weakening after medium growth in summer-cultivated paprika in EC-based recycling hydroponic cultivation with reused cocopeat substrate, It is not what I have to worry that decrease of the yield and deterioration of the quality due to the change of physical and chemical properties of the slab and the pathogenic bacteria infection.

Treatment Level of a Pond System for Ecological Treatment and Recycling of Animal Excreta (생태적 축산폐수 처리 및 재활용 연못시스템의 폐수처리수준)

  • Yang, Hong-Mo;Rhee, Chong-Ouk
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.1
    • /
    • pp.70-75
    • /
    • 1998
  • A model of pond system is developed for treatment and recycling of excreta from twenty-five adult dairy cattle. It is composed of wastewater treatment ponds and small fish ponds. Those are three facultative ponds in series; primary-secondary-tertiary pond and these are designed to rear carps without feeding. A pit is constructed at the bottom of primary pond for efficient sludge sedimentation and effective methane fermentation. It is contrived to block into it the penetration of oxygen dissolved in the upper layer of pond water. The excreta from the cattle housed in stalls are diluted by water used for clearing them. The washed excreta flow into the pit. The average yearly $BOD_5$ concentration of influent is 398.7mg/l. That of the effluent from primary, secondary and tertiary pond of the system is 49.18, 27.9, and 19.8.mg/l respectively. Approximate 88, 93, and 95 % of BOD5 are removed in each pond. The mean yearly SS concentration of influent is 360.5 mg/l That of the effluent from each pond is 53.4, 45.7, and32.7mg/l respectively. Approximate 86, 88, and 91% of SS are removed in each pond. The $BOD_5$ concentration of secondary and tertiary pond can satisfy 30mg/l secondary treatment standard. The SS concentration of effluent from tertiary pond, however, is slightly greater than the standard, which results from activities of carps growing in the pond. The average yearly total nitrogen concentration of influent is 206.8mg/l and that of the effluent from each pond is 48.6, 30.8, and 21.0mg/l respectively. Approximate 74, 88, and 90% of total nitrogen are removed in each pond. The mean yearly total phosphorous concentration of influent is 20.7mg/l and that of the effluent from each pond is 5.3, 3.2, and 2.1mg/l respectively. Approximate 97, 98, and 99% of total phosphorous are removed in each pond. The high removal of nitrogen and phosphorous results from active growth of algae in the upper layer of pond water. Important pond design parameters for southern part of Korea -- areal loading of BOD5, liquid depth, hydraulic detention time, free board, and pond arrangement -- are taken up.

  • PDF