DOI QR코드

DOI QR Code

Growth of Chinese Cabbage Plug Seedlings as Influenced by Various Pre-planting Nitrogen Concentrations in Inert Media

혼합상토에 기비로 혼합된 질소 농도가 배추 플러그묘 생장에 미치는 영향

  • Sung, Jwa Kyung (Division of Soil and Fertilizers, National Institute of Agricultural Science, Rural Development Administration) ;
  • Lee, Nu Ri (Department of Horticultural Sciences, College of Agriculture & Life Sciences, Chungnam National University) ;
  • Choi, Jong Myung (Department of Horticultural Sciences, College of Agriculture & Life Sciences, Chungnam National University)
  • 성좌경 (농촌진흥청 국립농업과학원 토양비료과) ;
  • 이누리 (충남대학교 농업생명과학대학 원예학과) ;
  • 최종명 (충남대학교 농업생명과학대학 원예학과)
  • Received : 2016.01.14
  • Accepted : 2016.07.13
  • Published : 2016.08.31

Abstract

This research was conducted to investigate the optimum level of nitrogen incorporated during formulation of root media as pre-plant fertilizer on the growth of plug seedlings of 'Bool-am No.3' Chinese cabbage. A root medium was formulated by blending peatmoss:coir dust:perlite at a ratio of 3.5:3.5:3.0 (v/v/v). The nitrogen was incorporated in the seven treatments at a rate of 0, 100, 250, 500, 750, 1,000, and $1,500mg{\cdot}L^{-1}$ during the root medium formulation. The concentrations of other essential nutrients except nitrogen were controlled to equal in all treatments. Then, the root medium was packed into 72-cell plug trays and seeds were sown. The growth measurements as well as tissue and soil solution analysis for nutrients were conducted 2 and 4 weeks after seed sowing. As seedlings grew, the pH in the extracted solution of all treatments tended to decrease. The decreases in the treatments of high N concentrations were more severe than those with low N, but the differences among treatments were not statistically significant. The differences of EC in extracted solution of root media among treatments were sizable until week 3, but the differences began to lessen and the EC decreased in all treatments after week 4. Growth of the aerial parts of plug seedlings at 2 weeks after sowing were highest in the $100mg{\cdot}L^{-1}$ and lowest in the $1,500mg{\cdot}L^{-1}$ treatments, but those at 4 weeks after sowing were highest in the $500mg{\cdot}L^{-1}$ and lowest in the $0mg{\cdot}L^{-1}$ treatments among all treatments tested. The tissue N content was highest and lowest in the treatments of 250 and $1,000mg{\cdot}L^{-1}$, respectively, when tissues were harvested at 4 weeks after sowing and analysed based on the dry weight of above-ground tissue. The contents of micronutrients were the highest in the 1,000 and $1,500mg{\cdot}L^{-1}$ treatments among all treatments. The results shown above indicate that the $250mg{\cdot}L^{-1}$ of pre-plant N and elevation of post-plant N concentration to above $100mg{\cdot}L^{-1}$ are suitable for raising plug seedlings of Chinese cabbage using inert media.

질소 시비 수준이 '불암 3호' 배추의 플러그묘 생장에 미치는 영향을 구명하기 위하여 본 연구를 수행하였다. 피트모쓰:코이어더스트:펄라이트가 3.5:3.5:3.0(v/v/v)으로 혼합된 상토를 조제하는 과정에서 질소 농도를 0, 100, 250, 500, 750, 1,000 및 $1,500mg{\cdot}L^{-1}$으로 조절하여 기비를 혼합하고 72구 플러그 트레이에 충전하였다. 이후 배추 종자를 파종하고 2주와 4주 후에 지상부 생육을 조사하였으며, 식물체 무기원소 함량 및 상토 추출액의 무기원소 농도를 분석하였다. 작물의 생육이 진행됨에 따라 모든 처리에서 상토 추출액의 pH가 점차 상승하는 경향을 보였으며 질소 시비 수준이 높아질수록 pH의 상승 정도가 적어지는 경향이었지만 처리간 차이는 뚜렷하지 않았다. 파종 직 후부터 3주 후까지 질소 시비수준별 상토 추출액의 처리간 EC 차이가 뚜렷하였지만, 4주 이후 모든 처리의 EC가 급격히 낮아지면서 처리간 차이도 적어졌다. 파종 2주 후 $100mg{\cdot}L^{-1}$ 처리의 초장, 지상부 생체중과 건물중 등 생육이 가장 우수하였고, $1,500mg{\cdot}L^{-1}$ 처리는 대부분의 생육 조사 항목에서 가장 저조하였다. 파종 4주 후 지상부 생장은 질소 수준을 $500mg{\cdot}L^{-1}$으로 조절한 처리에서 가장 우수하였고, 질소 무시비구($0mg{\cdot}L^{-1}$)에서 가장 저조하였다. 식물체의 T-N 함량은 질소 $1,000mg{\cdot}L^{-1}$ 처리에서 가장 낮았고, $250mg{\cdot}L^{-1}$ 처리구에서 가장 높았으며, 미량원소의 식물체 내 함량은 1,000과 $1,500mg{\cdot}L^{-1}$ 처리구에서 가장 높았다. 이상의 결과를 종합할 때 기비로 혼합된 질소 시비수준을 $250mg{\cdot}L^{-1}$으로 조절하고 추비의 농도를 N 기준 $100mg{\cdot}L^{-1}$ 보다 높게 조절하는 것이 배추 플러그육묘를 위해 가장 바람직하다고 판단하였다.

Keywords

References

  1. Bunt AC (1988) Media and mixes for container grown plants. Unwin Hyman, London
  2. Bennett WF (1993) Nutrient deficiencies and toxicities in crop plants. APS Press, St. Paul, Minn
  3. Choi JM, Lee CW, Chun JP (2012) Optimization of substrate formulation and mineral nutrition during the production of vegetable seedling grafts. Hortic Environ Biotechnol 53:212-221 https://doi.org/10.1007/s13580-012-0108-1
  4. Choi JM, Chung HJ (2007) Influence of pre-plant micronutrient mixes and ammonium to nitrate ratios in fertilizer solution on growth and micronutrient contents of marigold in plug culture. J Plant Nutr 30:915-926. doi:10.1080/15226510701375440
  5. Choi JM, Kim IY, Kim BK (2009) Root substrates. Hackyesa. Daejeon, Korea (In Korean), pp 237-273
  6. Jones JB (2005) Hydroponics: A practical guide for the soilless grower, Ed 2, CRC Press, London, pp 71-113
  7. Garton RW, Widders IE (1990) Nitrogen and phosphorus preconditioning of small-plug seedlings influence processing tomato productivity. HortScience 25:655-657
  8. Marschner P (2012) Marschner's mineral nutrition of higher plants, Ed 3, Academic Press Inc., San Diego, USA
  9. Nam MH, Jung SK, Lee YS, Choi JM, Kim HG (2006) Effects of nitrogen, phosphorus, potassium and calcium nutrition on strawberry anthracnose. Plant Pathol 55:246-249. doi:10.1111/j.1365-3059.2006.01322.x
  10. Nelson PV (2003) Greenhouse operation and management. 6th ed. Prentice Hall, Englewood Cliffs, NJ.
  11. NIAST (2000) Analysis methods of soil and plant. National Institute of Agricultural Science and Technology. RDA, Suwon, Korea
  12. Salifu KF, Jacobs DF, Pardillo G, Schott M (2006) Response of grafted Juglans nigra to increasing nutrient availability: growth, nutrition and nutrient retention in root plugs. HortScience 41:1477-1480
  13. Sonneveld C, Voogt W (2009) Plant nutrition of greenhouse crops. Springer. NY, USA, pp 405-419. doi:10.1007/978-90-481-2532-6
  14. Styer RC, Koranski DS (1997) Plug & transplant production: a growers guide. Ball Publishing. Batavia. IL
  15. Ulrich A (1993) Potato. In WF Bennett, ed, Nutrient deficiencies & toxicities in crop plants. APS Press, St Paul, Minn, pp 149-156
  16. Wallach R, da Silva FF, Chen Y (1992) Hydraulic characteristics of tuff (Scoria) used as a container medium. J Am Soc Hortic Sci 117:415-421