• Title/Summary/Keyword: 피부이미지식별

Search Result 4, Processing Time 0.017 seconds

A Design of Application using Deep Learning Image Recognition for Identification of Individual Skin Diseases (딥러닝 이미지 인식 기술을 활용한 개인 피부질환 식별용 어플리케이션 설계)

  • Bae, Chang-Hui;Kim, Hyeong-Jun;Cho, Won-Young;Ha, Ok-Kyoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.01a
    • /
    • pp.33-34
    • /
    • 2020
  • 사용자의 피부 관리 및 피부질환을 검사하는 기존의 어플리케이션은 유도 질문에 따른 사용자의 응답을 기반으로 결과를 유추하기 때문에 부정확한 진단 결과를 야기한다. 본 논문에서는 사용자의 미용관련 피부질환 이미지를 바탕으로 딥러닝 이미지 인식 기술 적용하여 건선, 사마귀, 여드름, 한포진을 대상으로 피부 미용질환에 대한 식별 정보를 제공하는 어플리케이션을 제시한다. 또한 이미지 인식률이 높은 ResNet과 SE-ResNet 알고리즘을 적용하여 피부질환 식별 적용 시 효과성을 실험적으로 비교한다.

  • PDF

A Study on Intelligent Skin Image Identification From Social media big data

  • Kim, Hyung-Hoon;Cho, Jeong-Ran
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.9
    • /
    • pp.191-203
    • /
    • 2022
  • In this paper, we developed a system that intelligently identifies skin image data from big data collected from social media Instagram and extracts standardized skin sample data for skin condition diagnosis and management. The system proposed in this paper consists of big data collection and analysis stage, skin image analysis stage, training data preparation stage, artificial neural network training stage, and skin image identification stage. In the big data collection and analysis stage, big data is collected from Instagram and image information for skin condition diagnosis and management is stored as an analysis result. In the skin image analysis stage, the evaluation and analysis results of the skin image are obtained using a traditional image processing technique. In the training data preparation stage, the training data were prepared by extracting the skin sample data from the skin image analysis result. And in the artificial neural network training stage, an artificial neural network AnnSampleSkin that intelligently predicts the skin image type using this training data was built up, and the model was completed through training. In the skin image identification step, skin samples are extracted from images collected from social media, and the image type prediction results of the trained artificial neural network AnnSampleSkin are integrated to intelligently identify the final skin image type. The skin image identification method proposed in this paper shows explain high skin image identification accuracy of about 92% or more, and can provide standardized skin sample image big data. The extracted skin sample set is expected to be used as standardized skin image data that is very efficient and useful for diagnosing and managing skin conditions.

Mobile App for Detecting Canine Skin Diseases Using U-Net Image Segmentation (U-Net 기반 이미지 분할 및 병변 영역 식별을 활용한 반려견 피부질환 검출 모바일 앱)

  • Bo Kyeong Kim;Jae Yeon Byun;Kyung-Ae Cha
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.4
    • /
    • pp.25-34
    • /
    • 2024
  • This paper presents the development of a mobile application that detects and identifies canine skin diseases by training a deep learning-based U-Net model to infer the presence and location of skin lesions from images. U-Net, primarily used in medical imaging for image segmentation, is effective in distinguishing specific regions of an image in a polygonal form, making it suitable for identifying lesion areas in dogs. In this study, six major canine skin diseases were defined as classes, and the U-Net model was trained to differentiate among them. The model was then implemented in a mobile app, allowing users to perform lesion analysis and prediction through simple camera shots, with the results provided directly to the user. This enables pet owners to monitor the health of their pets and obtain information that aids in early diagnosis. By providing a quick and accurate diagnostic tool for pet health management through deep learning, this study emphasizes the significance of developing an easily accessible service for home use.

An Experimental Comparison of CNN-based Deep Learning Algorithms for Recognition of Beauty-related Skin Disease

  • Bae, Chang-Hui;Cho, Won-Young;Kim, Hyeong-Jun;Ha, Ok-Kyoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.12
    • /
    • pp.25-34
    • /
    • 2020
  • In this paper, we empirically compare the effectiveness of training models to recognize beauty-related skin disease using supervised deep learning algorithms. Recently, deep learning algorithms are being actively applied for various fields such as industry, education, and medical. For instance, in the medical field, the ability to diagnose cutaneous cancer using deep learning based artificial intelligence has improved to the experts level. However, there are still insufficient cases applied to disease related to skin beauty. This study experimentally compares the effectiveness of identifying beauty-related skin disease by applying deep learning algorithms, considering CNN, ResNet, and SE-ResNet. The experimental results using these training models show that the accuracy of CNN is 71.5% on average, ResNet is 90.6% on average, and SE-ResNet is 95.3% on average. In particular, the SE-ResNet-50 model, which is a SE-ResNet algorithm with 50 hierarchical structures, showed the most effective result for identifying beauty-related skin diseases with an average accuracy of 96.2%. The purpose of this paper is to study effective training and methods of deep learning algorithms in consideration of the identification for beauty-related skin disease. Thus, it will be able to contribute to the development of services used to treat and easy the skin disease.