• Title/Summary/Keyword: 피복분류

Search Result 465, Processing Time 0.021 seconds

리모트센싱 데이터를 이용한 컴퓨터그래픽에 의한 도시 토지피복 및 녹지경관의 변화 특성

  • 한갑수;김경남
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.05a
    • /
    • pp.351-353
    • /
    • 2003
  • 위성데이터를 이용한 토지피복분류에 의한 녹지의 경년변화의 특성 및 표고데이터와의 중첩에 의한 CG의 작성에 의해 경관으로서의 토지피복의 경년별 변화특성을 파악하였다. 1989년에서 2000년에 걸쳐 녹지는 약 3.9% 감소하였으며, 경관화상을 통해서는 약 2.3% 감소한 것으로 분석되었다 평면적인 녹지의 감소가 경관상의 녹지량의 감소율과 깊은 관련이 있는 것이 확인되었다.

  • PDF

Accuracy analysis of Multi-series Phenological Landcover Classification Using U-Net-based Deep Learning Model - Focusing on the Seoul, Republic of Korea - (U-Net 기반 딥러닝 모델을 이용한 다중시기 계절학적 토지피복 분류 정확도 분석 - 서울지역을 중심으로 -)

  • Kim, Joon;Song, Yongho;Lee, Woo-Kyun
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.409-418
    • /
    • 2021
  • The land cover map is a very important data that is used as a basis for decision-making for land policy and environmental policy. The land cover map is mapped using remote sensing data, and the classification results may vary depending on the acquisition time of the data used even for the same area. In this study, to overcome the classification accuracy limit of single-period data, multi-series satellite images were used to learn the difference in the spectral reflectance characteristics of the land surface according to seasons on a U-Net model, one of the deep learning algorithms, to improve classification accuracy. In addition, the degree of improvement in classification accuracy is compared by comparing the accuracy of single-period data. Seoul, which consists of various land covers including 30% of green space and the Han River within the area, was set as the research target and quarterly Sentinel-2 satellite images for 2020 were aquired. The U-Net model was trained using the sub-class land cover map mapped by the Korean Ministry of Environment. As a result of learning and classifying the model into single-period, double-series, triple-series, and quadruple-series through the learned U-Net model, it showed an accuracy of 81%, 82% and 79%, which exceeds the standard for securing land cover classification accuracy of 75%, except for a single-period. Through this, it was confirmed that classification accuracy can be improved through multi-series classification.

Review of Issues and Problems in Using Landscape Ecology Indices (경관생태지수 사용에 대한 고려사항과 문제점에 관한 고찰)

  • Lee Sang-Woo;Yoon Eun-Joo;Lee In-Sung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.32 no.5
    • /
    • pp.73-83
    • /
    • 2004
  • 경관생태지수는 녹지의 이질성(Heterogeneity)을 계량화하기 위하여 제안되고 발전되어 왔다. 지난 수십년간 많은 연구에서 경관생태지수가 광범위하게 사용되어 그 효용성이 인정되었지만, 경관생태지수의 사용에 따른 많은 문제점들이 제기되고 있다. 본 연구의 목적은 경관생태지수 사용에 따른 고려사항과 문제점들을 기존 연구들을 통해 고찰하고, 이를 기초로 적절한 응용방법을 제안하고자 하는 것으로, 지수의 문제점을 내재적인 문제들과 응용상의 문제들로 구분하여 논의하였다. 지수 자체의 내재적인 문제로는 녹지구조와 기능과의 관계, 녹지구조의 측정 및 대표, 그리고 지수들의 불안정성 등을 들 수 있으며, 응용상의 문제점들로는 지수 선택, 스케일 변화와 피복 분류과정에 개입된 문제, 해석상의 오류 등을 들 수 있다. 이러한 문제들을 최소화하는 방안으로는 첫째, 가설에 입각한 연구가 필요하며, 둘째, 측정하고자 하는 녹지의 공간적 특성을 명확히 규정하여야 하고, 셋째, 변위가 예측 가능한 지수를 사용해야 하고, 넷째, GIS나 인공위성 자료의 축척을 변화시키지 말아야 하며, 마지막으로 다섯째, 피복분류 알고리즘을 사용하여 분류상 오류를 최소화해야 한다는 점이다.

Land-Cover Classification of Barton Peninsular around King Sejong station located in the Antarctic using KOMPSAT-2 Satellite Imagery (KOMPSAT-2 위성 영상을 이용한 남극 세종기지 주변 바톤반도의 토지피복분류)

  • Kim, Sang-Il;Kim, Hyun-Cheol;Shin, Jung-Il;Hong, Soon-Gu
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.5
    • /
    • pp.537-544
    • /
    • 2013
  • Baton Peninsula, where Sejong station is located, mainly covered with snow and vegetation. Because this area is sensitive to climate change, monitoring of surface variation is important to understand climate change on the polar region. Due to the inaccessibility, the remote sensing is useful to continuously monitor the area. The objectives of this research are 1) map classification of land-cover types in the Barton Peninsular around King Sejong station and 2) grasp distribution of vegetation species in classified area. A KOMPSAT-2 multispectral satellite image was used to classify land-cover types and vegetation species. We performed classification with hierarchical procedure using KOMPSAT-2 satellite image and ground reference data, and the result is evaluated for accuracy as well. As the results, vegetation and non-vegetation were clearly classified although species shown lower accuracies within vegetation class.

Extraction of SAR Imagery Informations for the Classification Accuracy Enhancement - Using SPOT XS and RADARSAT SAR Imagery (광학영상의 토지피복분류 정확도 향상을 위한 SAR 영상 정보의 처리에 관한 연구)

  • Seo, Byoung-Jun;Park, Min-Ho;Kim, Yong-Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.8 no.1 s.15
    • /
    • pp.121-130
    • /
    • 2000
  • For the land-cover classification we have usually used imagery of the optical sensors only. But currently a number of the satellite with various sensors are operating and the availability of using the data acquired from them are increasing. SAR sensors, in particular, can produce additional informations on the land-cover which has not been available from optical sensors. On this study, I have applied the SAR Image to the SPOT XS image in the classification procedures, and analysed the classified results. In this procedure I have extracted texture informations from SAR intensity images, then applied both intensity and texture informations. From the accuracy analysis, overall accuracy are increased slightly when the SAR texture was applied. In case of the Built-up class the results showed higher accuracy than those of when only the SPOT XS image was used. From this result I can show that overall accuracy was increased slightly but the spatial distribution of classes was visibly improved.

  • PDF

Land Cover Classification Using Sematic Image Segmentation with Deep Learning (딥러닝 기반의 영상분할을 이용한 토지피복분류)

  • Lee, Seonghyeok;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.279-288
    • /
    • 2019
  • We evaluated the land cover classification performance of SegNet, which features semantic segmentation of aerial imagery. We selected four semantic classes, i.e., urban, farmland, forest, and water areas, and created 2,000 datasets using aerial images and land cover maps. The datasets were divided at a 8:2 ratio into training (1,600) and validation datasets (400); we evaluated validation accuracy after tuning the hyperparameters. SegNet performance was optimal at a batch size of five with 100,000 iterations. When 200 test datasets were subjected to semantic segmentation using the trained SegNet model, the accuracies were farmland 87.89%, forest 87.18%, water 83.66%, and urban regions 82.67%; the overall accuracy was 85.48%. Thus, deep learning-based semantic segmentation can be used to classify land cover.

LAND COVER CHARACTERISTICS OF MOUNTAIN REGIONS IN NORTH KOREA (북한 산악지역의 개간지 및 산림 특성에 관한 연구)

  • Cha, Su-Young;Park, Chong-Hwa
    • Proceedings of the KSRS Conference
    • /
    • 2008.03a
    • /
    • pp.109-112
    • /
    • 2008
  • 현재 북한 토지피복 특성 중의 하나인 과도한 산지의 농지로의 전용은 홍수 등 자연재해를 일으키는 원인이 되고 있지만 북한에 대한 참조자료의 부족으로 피해규모나 상황에 대한 이해가 부족하다. 본 연구는 북한 양강도 산간지역을 대상으로 개간농지와 산림의 토지피복특성을 가을시기(2005 년 10 월 25 일) Quickbird (<0.6m) 위성영상의 육안분석과 분광특성을 이용하여 정확한 토지피복분류에의 기초 정보를 제공하는 것을 목적으로 한다. 토지피복 유형별 Training area 의 ROI(Region of Interest)의 면적은 2500pixel 로 하였고, 이것을 다시 .shp 파일로 변환하여 GoogleEarth 에서 표고 및 경사 등 보다 자세한 지형지물을 확인하였다. Quickbird 영상의 NDVI 분석을 통해 0.2 정도에서 식생과 농경지로 구분하는 임계값(Threshold)을 추정할 수 있었지만 늦게까지 추수를 끝내지 않은 농작물이나 이모작 농작물의 경우는 산림과 혼재되어 나타나고 있었다. 또한, 산림의 북사면은 수역 다음으로 낮은 NDVI 값을 나타내어 지형의 영향이 나타나고 있음을 알 수 있었다.

  • PDF

Classification of Multi-temporal SAR Data by Using Data Transform Based Features and Multiple Classifiers (자료변환 기반 특징과 다중 분류자를 이용한 다중시기 SAR자료의 분류)

  • Yoo, Hee Young;Park, No-Wook;Hong, Sukyoung;Lee, Kyungdo;Kim, Yeseul
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.3
    • /
    • pp.205-214
    • /
    • 2015
  • In this study, a novel land-cover classification framework for multi-temporal SAR data is presented that can combine multiple features extracted through data transforms and multiple classifiers. At first, data transforms using principle component analysis (PCA) and 3D wavelet transform are applied to multi-temporal SAR dataset for extracting new features which were different from original dataset. Then, three different classifiers including maximum likelihood classifier (MLC), neural network (NN) and support vector machine (SVM) are applied to three different dataset including data transform based features and original backscattering coefficients, and as a result, the diverse preliminary classification results are generated. These results are combined via a majority voting rule to generate a final classification result. From an experiment with a multi-temporal ENVISAT ASAR dataset, every preliminary classification result showed very different classification accuracy according to the used feature and classifier. The final classification result combining nine preliminary classification results showed the best classification accuracy because each preliminary classification result provided complementary information on land-covers. The improvement of classification accuracy in this study was mainly attributed to the diversity from combining not only different features based on data transforms, but also different classifiers. Therefore, the land-cover classification framework presented in this study would be effectively applied to the classification of multi-temporal SAR data and also be extended to multi-sensor remote sensing data fusion.

Development of Classification Method for the Remote Sensing Digital Image Using Canonical Correlation Analysis (정준상관분석을 이용한 원격탐사 수치화상 분류기법의 개발 : 무감독분류기법과 정준상관분석의 통합 알고리즘)

  • Kim, Yong-Il;Kim, Dong-Hyun;Park, Min-Ho
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.4 no.2 s.8
    • /
    • pp.181-193
    • /
    • 1996
  • A new technique for land cover classification which applies digital image pre-classified by unsupervised classification technique, clustering, to Canonical Correlation Analysis(CCA) was proposed in this paper. Compared with maximum likelihood classification, the proposed technique had a good flexibility in selecting training areas. This implies that any selected position of training areas has few effects on classification results. Land cover of each cluster designated by CCA after clustering is able to be used as prior information for maximum likelihood classification. In case that the same training areas are used, accuracy of classification using Canonical Correlation Analysis after cluster analysis is better than that of maximum likelihood classification. Therefore, a new technique proposed in this study will be able to be put to practical use. Moreover this will play an important role in the construction of GIS database

  • PDF

The Land-cover Changes and Pattern Analysis in the Tidal Flats Using Post-classification Comparison Method: The Case of Taean Peninsula Region (선분류 후비교법을 이용한 간석지의 토지피복 변화 및 패턴 분석 - 태안반도 지역을 사례로 -)

  • Jang, Dong-Ho;Kim, Chan-Soo;Park, Ji-Hoon
    • Journal of the Korean Geographical Society
    • /
    • v.45 no.2
    • /
    • pp.275-292
    • /
    • 2010
  • This study investigated the land-cover changes in the tidal flat of the Taean peninsula due to man-made environmental changes between 1972 and 2008, through time-series analysis based on a modified post-classification comparison method and multi-temporal satellite images. The analysis revealed that the land-cover of the tidal flat has changed from tidal flat to wetland and from wetland to paddy field between 1972 and 2008. Also, the pattern of detailed land-cover changes is as follows: tidal flat to wetland; lake and saltpan to bare land and paddy field. The accurate classification of each image is needed for the application of the post-classification comparison method. The overall accuracy of the classified images was found to be 95.33% on average, and the Kappa value was 0.941 on average.