• Title/Summary/Keyword: 피로균열성장거동

Search Result 145, Processing Time 0.022 seconds

Evaluation of Fatigue Crack Propagation Behavior of Nickel-based Powder Metallurgy Superalloy for Aircraft at Elevated Temperature (항공기 터빈 디스크용 니켈기 초내열 분말야금 합금의 고온 피로균열진전 거동 비교 평가)

  • Yoon, Dong Hyun;Na, Seong Hyeon;Kim, Jae Hoon;Kim, Hongkyu;Kim, Donghoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.8
    • /
    • pp.751-758
    • /
    • 2017
  • The behavior of fatigue crack growth of nickel-based powder metallurgy superalloy that could be used in aircraft turbine disc is investigated at room temperature, and $650^{\circ}C$ considering real operating conditions. The direct current potential drop(DCPD) method was used to measure the crack length of material in real time according to ASTM E647. Tests were performed with various stress ratios (0.1 and 0.5). Experimental results show that stress ratio, and temperature all affect the behavior of fatigue crack growth. As the stress ratio and temperature increase, the fatigue crack growth rate of nickel-based powder metallurgy superalloy also increases. Results were compared and reviewed with fatigue crack growth rates of other nickel-based superalloy materials (Inconel-100) that were studied in previous papers. Fractography analysis of the fractured specimens was performed using as SEM.

Fatigue Crack Growth, Coalescence Behavior and Its Simulation on Multi-Surface Cracks (복수 표면피로균열의 성장합체거동과 시뮬레이션에 관한 연구)

  • 서창민;황남성;박명규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.716-728
    • /
    • 1994
  • In this paper, fatigue tests were carried out to study the behavior of growth and coalescence of multi-surface cracks which were initiated at the semi-circular surface notches, and a simulation program was developed to predict their growth and coalescence behavior. By comparing the experimental result with those of the simulation based on SPC(surface point connection), ASME and BSI(British Standards Institution) conditions, we tried to enhance the reliance and integrity of structures. This shows that the simulation result has utility for fatigue life prediction.

Behaviour of Fatigue Crack Propagation under Mixed Mode(I+II) with variation of Angle and Crack Length (혼합모드(I+II)하에서 각도와 균열길이 변화를 갖는 피로균열 전파 거동)

  • 정의효
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.5
    • /
    • pp.73-79
    • /
    • 2000
  • The applications of fracture mechanics have traditionally concentrated on cracks loaded by tensile stresses, and growing under an opening or mode I mechanism. However, many cases of failures occur from growth of cracks subjected to mixed mode loading. Several criteria have been proposed regarding the crack growth direction under mixed mode loadings. This paper is aimed at investigation of fatigue crack growth behaviour under mixed mode(I+II) with variation of angle and pre-crack length in two dimensional branched type precrack. Especially the direction of fatigue crack propagation was predicted and effective stress intensity factor was calculated by finite element analysis(FEA. In this paper, the maximum tangential stress(MTS) criterion was used to predict crack growth direction. Not only experiment but also finite element analysis was carried out and the theoretical predictions were compared with experimental results.

  • PDF

Fatigue Life Evaluation of Turbine Shaft Using Applied Shaft Stress (회전체 스트레스 정보를 이용한 터빈 축 피로수명 평가)

  • Jin, Byeong Kyou;Park, Ki Beom;Chai, JangBom
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.437-442
    • /
    • 2014
  • The equipment or with a constant torque and a variable stress due to axial vibration such as the turbine-generator system in nuclear power plant show the fatigue fracture behavior. Thus this study whoul aim to measure the torsional stress and analyze the fatigue fracture behavior. To achieve this, we manufactured the equipment similar with turbine-generator system and applied various torsional vibration stress due to external load. In particular, the evaluation was conducted with the existing evaluation methods of the fatigue behavior of known stress-life, strain-life, crack growth assessment methods. With increasing the external load and independent methods tends to decrease the fatigue life was confirmed up to 10 times in 5 kV external load compared to without external load.

Fracture Mechanics Applied to Fatigue Crack Growth Behavior at Elevated Temperatures (고온 피로균열 성장거동에 관한 파괴역학의 응용에 관한 연구)

  • 서창민;김영호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1552-1560
    • /
    • 1990
  • A general form of the mathematical function in the fatigue crack growth rate law for CT specimens was determined by means of the dimensional analysis at elevated temperatures. The experimental results can be rigorously described by the combination of rate theory and fracture mechanics. The rate theory approach extends the scope of fracture mechanics through the consideration of the temperature. The fatigue crack growth rates are represented by the Arrhenius type equation. This equation explains fairly well the experimental data for Cr-Mo-V rotor steel and A517-F steel in the comparatively wide temperature regions as affected with the temperature and the stress intensity factor range interaction.

Ti-6A1-4V의 저주기 피로균열성장거동에 관한 연구

  • 강봉수;한지원;김봉철;우흥식
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1999.06a
    • /
    • pp.19-24
    • /
    • 1999
  • Ti-6A1-4V재는 1950년대에 개발된 이후, 전체 Ti-합금 수요의 50% 이상을 차지하고 있으며 주로 항공기 터빈 엔진 날개나 자동차의 엔진 밸브 등 각종 열기관의 부품으로 사용되어 왔으나 최근에는 인체의 인공관절로도 수요가 증가하고 있다. (중략)

  • PDF

Crack Growth Analysis and Crack Arrest Design of Stiffened Panels(I) - Numerical Approaches to Crack Arrest Design Chart (보강판의 균열거동해석과 Crack Arrest 설계(I) - Crack Arrest 설계기준의 수치해석)

  • Rhee, Eui-Jong;Rhee, Hwan-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.2
    • /
    • pp.43-49
    • /
    • 2005
  • The purpose of a fatigue crack arrest design is to prevent a fatigue fracture of machine and structure resulted from unstable crack growth. In all cases of load transfer to second elements such as stringers, doublers or flanges, crack arrest is possible; arrest occurring when the fatigue crack reaches the second element. In the present work, a numerical analysis was carried out to estimate the effect of shape parameters on fatigue crack growth and arrest behavior of integrally stiffened panels. Based on these results, a set of fatigue crack arrest design chart is presented as "non-dimensional arrest load - thickness ratio" relationship.

  • PDF

The Effect of Fatigue Crack Behavior on the Variable Depth of Micro Hole Defects in SM20C at the Symmetric Position (대칭위치에 존재하는 미소원공결함의 깊이변화가 SM20C의 피로균열거동에 미치는 영향)

  • 송삼홍;김성태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.856-860
    • /
    • 2002
  • The main objective of this study is to consider the effect of fatigue crack behavior on the variable depth of micro hole defects in SM20C at the symmetric position. The fatigue crack propagation test is performed by rotary bending fatigue test machine. The relationship between crack length(2a), cycles(N) and crack growth rate(da/dN) are investigated in this study. The result from the rotary bending fatigue test under the applied stress at 250MPa turned out that the fatigue life illustrated almost constant when the depth of symmetric micro hole deflects is both part A and B at the hope depth(h) = 0.5mm.

  • PDF

Initiation and Propagation Behaviors of Micro-Surface-Fatigue Cracks under In-Plane Tension Fatigue Tests (引張 軸荷重 疲勞 에 의한 微小表面 균열 의 發생 . 成長擧動)

  • 서창민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.1
    • /
    • pp.1-9
    • /
    • 1985
  • In-plane tension fatigue tests (R = 0.05) were carried out to investigate the initiation and propagation behaviors of micro-surface-fatigue cracks on smooth surfaces of a mild steel. Also, the investigations of saturated cyclic strain which can be obtained by the fatigue tests have been made via the cyclic strain intensity factor, .DELTA. $K_{\epsilon}$/, for the purpose of unifying two approaches of the study of fatigue; the one approach is based on the fracture mechanics concept and the other on lowcycle fatigue concept. Some of the results are as follows; The growth rate, d(2a)/dN, of small cracks cannot be represented by one straight line as a function of .DELTA.K for various of the nominal stress range, .DELTA..sigma., and is higher than that of a larger through crack. The rearrangement of the d(2a)/dN by .DELTA..epsilon..root..pi.s( = .DELTA. $K_{\epsilon}$/) with the stress range .DELTA..epsilon. in .DELTA.K replaced by .DELTA..epsilon., strain range, gives one straight line of the .DELTA. $K_{\epsilon}$-d(2a)/dN relation for various values of stress range .DELTA.$_{\epsilon}$../.X>../.

A Modification in the Analysis of the Growth Rate of Short Fatigue Cracks in S45C Carbon Steel under Reversed Loading (반복하중조건 하에서의 S45C 탄소강에 대한 미소피로균열 성장속도 해석의 수정)

  • McEvily,A.J.
    • Journal of Welding and Joining
    • /
    • v.13 no.2
    • /
    • pp.96-105
    • /
    • 1995
  • A modified method for the analysis of short fatigue crack growth has been presented, and calculations based upon the modified method are compared with experimental results for S45C carbon steel. It is also shown that the modified method is in good agreement with experimental data. The proposed equation for the fatigue crack growth rates includes a material constant which relates the threshold level to the endurance limit, a correction for elastic-plastic behaviour and a means for dealing with the effects of crack closure. In this study one of the modifications is to substitute the Forman' s elastic expression of the stress intensity factor range into the geometrical factor The other is a consideration of the bending effect which is developed from the moment caused by the eccentric cross sectional geometry as the crack grows. Thus, this method is useful for residual life prediction of the mechanical structures as well as the welding structures.

  • PDF