• Title/Summary/Keyword: 플레인 모르타르

Search Result 6, Processing Time 0.016 seconds

Improving Quality of Eco-Mortar Incorporating Blast Furnace Slag and Recycled Aggregate Depending on Replacement Gypsum and Cement (고로슬래그 미분말과 순환잔골재를 사용하는 친환경 모르타르에 탈황석고 및 시멘트에 의한 품질향상)

  • Baek, Byung Hoon;Han, Cheon-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.2
    • /
    • pp.193-199
    • /
    • 2015
  • As a solution of both environmental issue of reducing carbon dioxide emission and sustainable issue of exhausting natural resources, in concrete industry, many research on recycling various by-products or industrial wastes as the concrete materials has been conducted. The aim of this research is feasibility analysis of additional reaction with ordinary Portland cement and flue gas desulfurization gypsum based on the blast furnace slag and recycled fine aggregate based mortar to achieve the normal strength range. Consequently, in the case of mortar replaced 10% FGD and 30% OPC for BS, 80% of plain OPC mortar's compressive strength was achieved. Furthermore, when the water-to-binder ratio is decreased to keep the practically similar level of flow, it is expected to be achieve the equivalent compressive strength to plain OPC mortar.

Workability and Strength Characteristics of Lathe Scrap Reinforced Cementitious Composites (선반 스크랩 보강 시멘트 복합체의 작업성 및 강도 특성)

  • Lee, Hyun-Jin;Bae, Su-Ho;Kwon, Soon-Oh;Kim, Sung-Wook;Park, Jung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.6
    • /
    • pp.40-45
    • /
    • 2016
  • It should be noted that the use of the lathe scrap for making fiber reinforced cementitious composites raised friendly environmental effect as well as economy because the lathe scrap is a by-product of steel manefactures and is occurred when lathe and milling works of them are conducted to process steel manufactures. Thus, the purpose of this experimental research is to investigate workability and strength characteristics of lathe scrap reinforced cementitious composites(LSRCCs). For this purpose, three types of lathe scraps were collected from processing plants of metal, and then LSRCCs containing these were made for 2mm width and 40mm length. As a result, it was observed from the test results that the workability of LSRCCs was slightly decreased than plain mortar and the flexural strength of LSRCCs were much larger than these of plain mortar and effect of types of lathe scrap on the characteristics of LSRCCs were somewhat large.

Improved Compressive·Flexural Performance of Hybrid Fiber-Reinforced Mortar Using Steel and Carbon Fibers (강 및 탄소 섬유를 사용한 하이브리드 섬유보강 모르타르의 압축·휨성능 향상)

  • Heo, Gwang-Hee;Park, Jong-Gun;Seo, Dong-Ju;Koh, Sung-Gon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.48-59
    • /
    • 2021
  • In this study, experiments were conducted to investigate the compressive·flexural performances of single fiber-reinforced mortar (FRM) using only steel fiber or carbon fiber which has different material properties as well as hybrid FRM using a mixture of steel and carbon fibers. The mortar specimens incorporated steel and carbon fibers in the mix proportions of 1+0%, 0.75+0.25%, 0.5+0.5%, 0.25+0.75% and 0+1% by volume at a total volume fraction of 1.0%. Their mechanical performance was compared and examined with a plain mortar without fiber at 28 days of age. The experiments of mortar showed that the hybrid FRM using a mixture of 0.75% steel fibers + 0.25% carbon fibers had the highest compressive and flexural strength, confirming by thus the synergistic reinforcing effect of the hybrid FRM. On the contrast, in the case of hybrid FRM using a mixture of 0.5% steel fibers + 0.5% carbon fibers witnessed the highest flexural toughness, suggesting as a result the optimal fiber mixing ratio of hybrid FRM to improve the strength and flexural toughness at the same time. Moreover, the fracture surface was observed through a scanning electron microscope (SEM) for image analysis of the FRM specimen. These results were of great help for images analysis of hybrid reinforcing fibers in cement matrix.

Study on Microstructure and Electrical Properties of Cement Mortar Containing Conductive Fibers (전도성 섬유가 함유된 시멘트 모르타르의 미세구조 및 전기적 특성 연구)

  • Park, Jong-Gun;Seo, Dong-Ju;Lim, Doo-Yeol;Lee, Yu-Jae;Heo, Gwang-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.72-83
    • /
    • 2022
  • This paper studied the effect on the microstructure, electrical properties, and compressive strength of cement mortar containing carbon fiber (CF) and steel fiber (SF), which are conductive materials. The resistivity of conductive fiber-reinforced cement mortar (FRCM) was measured using the 4-probe method, and the compressive strength was measured based on the compression test. Their performance was compared and reviewed with plain mortar (PM). Furthermore, the surface shape and composition of the fracture surface of the conductive FRCM were analyzed using a scanning electron microscope (SEM) and an energy disperse X-ray spectrometer (EDS). The results showed that the resistivity gradually increased as the curing time increased in all specimens, whereas the resistivity decreased significantly as the fiber volume fraction increased. Adding steel fibers up to 1.25% did not affect the resistivity of cement mortar considerably. On the contrast, the resistivity of carbon fiber was somewhat decreased even at low contents (ie, 0.1 to 0.3%), and thereafter, it was significantly decreased. The percolation threshold of the conductive CFRCM containing CF used in this experiment was 0.4%, and it is judged to be the optimum carbon fiber dosage to maximize the conductive effect while maintaining the compressive strength performance as much as possible. For the surface shape and composition analysis of conductive FRCM, the fracture surface was observed through SEM-EDS. These results are considered to be very useful in establishing the microstructure mechanism of reinforcing fibers in cement mortars.

Investigation on Fire Resistance of Mortar Made of Powder Type Sericite (분말형 견운모를 혼입한 모르타르의 내화성능 연구)

  • Park, Ji-Yeon;Kim, So-I;Kim, Seong-Ha;Lee, Jae-Yong;Chung, Chul-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.1
    • /
    • pp.26-32
    • /
    • 2021
  • Powder type sericite has been actively researched in the area of chemistry and mineralogy in terms of waste recycling. It is a material that can be obtained relatively inexpensively with a low thermal conductivity like general mica, so in order to improve the thermal conductivity of the mortar, powder type sericite was used in this work. Compressive strengths of mortar before and after high temperature exposure were compared and evaluated to determine the fire resistance of mortar with powder type sericite. According to the experimental results, it was found that the compressive strength decreased when powder type sericite was replaced with cement, but the decrease in compressive strength with the increasing amount of powder type sericite was insignificant. When powder type sericite was incorporated, the thermal conductivity decreased, and the residual strengths of the mortar specimens which were heat treated at 600℃, 900℃, and 1,200℃ were higher than that of plain mortar. From the comprehensive evaluation of the experimental results, it can be concluded that the powder type sericite has the potential to be used as a refractory material for cement composites.

Effect of the Curing Temperature on Autogenous Shrinkage of the High Strength Mortar incorporating Mineral Admixtures (양생온도가 혼화재 치환 고강도 모르터의 응결 및 자기수축에 미치는 영향)

  • Han, Min-Cheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.127-133
    • /
    • 2012
  • In this paper, tests were carried out to monitor the effect of the curing temperature on autogenous shrinkage of the high strength cement mortar incorporating silica fume, blast furnace slag and fly ash ranged from 10%~30% by mass of cement. The curing temperatures were varied from $5^{\circ}C$ to $35^{\circ}C$, respectively. According to results, the setting time exhibited to delay with increase of admixture and drop of temperature. As for the effect of curing temperature on autogenous shrinkage, the increase of SF and BS resulted in an increase of autogenous shrinkage, while the use of FA decrease. The higher the curing temperature is, the greater the autogenous shrinkage is. This is due to the accelerated hydration rate of cement. It is found that the maturity does not consider the effect of curing temperature on autogenous shrinkage.

  • PDF