• Title/Summary/Keyword: 프리캐스트 콘크리트 바닥판

Search Result 70, Processing Time 0.024 seconds

Fatigue Evaluation of Precast Concrete Deck Connection using Ultra-High Performance, Fiber Reinforced Concrete (초고성능 섬유보강 콘크리트를 적용한 프리캐스트 바닥판 접합부의 피로성능 평가)

  • Lee, Jun-Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.275-285
    • /
    • 2015
  • This experimental study presents the fatigue evaluation of a precast deck connected using Ultra-High Performance, Fiber Reinforced Concrete (UHPFRC). Four types of two identical large-scale specimens were fabricated with simplified splice rebar details which had a short splice length of ten times rebar diameter. The flexural behavior of each type of specimens until failure was investigated and fatigue behavior of the same type of specimens was then evaluated using two-million cyclic loading. In the flexural tests, tensile rebars exhibited the deformation exceeding yielding strain but failure mode related to the splice details was not observed in spite of such a short splice length. In the fatigue tests, damage was not appreciably accumulated by the cyclic loading except initial flexural cracks and the stress variations in tensile rebars was less than the allowable stress range. These experimental results demonstrate that all types of specimens exhibited acceptable fatigue performance and indicate that enhanced mechanical properties of ultra-high performance material permits to use a simplified splice details along with short joint width.

An Experiment and Analysis of Precast Concrete Baseplate on Bimodal Tram Dedicated Bridge (바이모달 트램(Bimodal Tram) 전용교량에 적용된 프리캐스트 콘크리트 바닥판의 거동특성 분석에 관한 실험 및 해석적 연구)

  • Cheon, Ju Hyoun;Joo, Young Jong;Kim, Ryang Gyun;Yoon, Hee Taek
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.116-124
    • /
    • 2011
  • To purpose of this study is to develop the new type of precast concrete baseplate which is only for bimodal tram. The experiments with real size specimens, which are hollowed precast baseplate, prove the efficacy of new designed baseplate by comparing with the result of RCAHEST. Through tests progressed according to different loading locations, the specimens show the stability by the safety factor of 8~9. Also the results of RCAHEST that is the nonlinear finite element method program, appropriately estimate the occuring crack on concrete, yielding reinforcement and ultimate behavior at failure.

Evaluation of Flexural Strength for UHPC Deck Joints with Lap-Spliced Reinforced Steel Bar (UHPC 바닥판 철근겹침이음 연결부의 휨강도 평가)

  • Hwang, Hoon Hee;Yeo, In Soo;Cho, Keun Hee;Park, Sung Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.92-99
    • /
    • 2011
  • Ultra High Performance Concrete(UHPC) is a superior structural material with high strength and durability. Construction of light and slim structures is realized to apply this expectable new materials in practice. This research is a part of the project to develop UHPC precast deck system for hybrid cable stayed bridge. The main object of this study is to investigate behavior of the lap-spliced reinforced connection in UHPC. The major parameter considered in experimental plan was lap-spliced length. The 4-points bending test for 12 specimens were conducted to verify the effect of considered parameters. Test results show that the minimum value of lap spliced length of 300mm which specified in current korea high bridge design code was very conservative for UHPC precast deck system.

Development of Short-span Precast Concrete Panels for Railway Bridge (철도교용 단지간 프리캐스트 콘크리트패널의 개발)

  • Seol, Dae-Ho;Lee, Kyoung-Chan;Kim, Ki-Hyun;Youn, Seok-Goo
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.545-553
    • /
    • 2016
  • This paper presents experimental static test results of the precast concrete panels developed for short-span concrete bridge deck form. Different from LB-DECK, concrete rib attached to the bottom surface of concrete panel, and Top-bar is not used at the top surface of concrete panel. Number of concrete ribs and cross-section details of concrete rib are determined from the analytical results of parametric study considering the span length and the thickness of concrete bridge decks. Shear rebars are installed at the top surface of concrete panel for composite action between precast concrete panel and cast-in-place concrete. In order to evaluate the safety and the serviceability of the developed short-span concrete panel subjected to design load, static load test is conducted. Three test panels with span length of 1.6m are fabricated, and during the load test displacements, strains and cracks of test panels are measured and final failure modes are investigated. Serviceability of the test panels is evaluated based on the results of displacements, cracking load, and crack width at the design load level. Safety is also evaluated based on the comparison of the ultimate strength and the factored design load of test panels. Based on the test results, it is confirmed the short-span precast concrete panel satisfies the serviceability and safety regulated in design codes. In addition, the range of span length of concrete bridge decks for the short-span concrete panel is discussed.

Minimum Thickness of the Plate Member for UHPC Deck (초고성능콘크리트 바닥판 판부재의 최소두께)

  • Hwang, Hoon-Hee;Yoo, Dong-Min;Park, Sung-Yong;Kim, Byung-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.123-124
    • /
    • 2009
  • This research is a part of the comprehensive research project to develop the optimized UHPC precast deck system applying to durable and cost-effective hybrid cable stayed bridge. Longitudinally prestressed ribbed section is proposed to make the best use of a advantage of the ultra high performance concrete and the design concept is presented to decide the sectional property.

  • PDF

Application of FRP-Concrete Composite Deck to Cable Stayed Bridge (FRP-콘크리트 합성 바닥판의 사장교 적용)

  • Cho, Keun-Hee;Park, Sung-Yong;Kim, Sung-Tae;Kim, Byung-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.217-220
    • /
    • 2008
  • A modified FRP-concrete composite deck applicable to cable stayed bridge with long girder-to-girder span is proposed, and its design and economical efficiency are presented. The existing FRP-concrete composite deck has low section stiffness due to adoption of GFRP panel with low elastic modulus, which arrives at difficulty in meet of serviceability limit such as deck deflection. So a new-type FRP-concrete composite deck, named precast FRP-concrete deck, is developed by extensioning concrete at the both ends of FRP-concrete composite deck, which brings the effect of reduction of net span length of deck. Compared to the existing FRP-concrete composite deck this modified deck has the advantage of increasing span length but slightly increases self weight. For this type of deck the section optimization is carried out for the cases of simply supported on girder and composite to girder. The optimized deck was applied to cable stayed bridge with a center span length of 540m, and as a result it is verified that PFC deck can be applied efficiently to cable stayed bridge due to reduction of quantity of upper structure.

  • PDF

Performance Evaluation of FRP-Concrete Composite Deck for Cable Stayed Bridges (사장교용 FRP-콘크리트 합성바닥판의 부모멘트부 성능평가)

  • Kim, Sung-Tae;Park, Sung-Yong;Cho, Keun-Hee;Cho, Jeong-Rae;Kim, Byung-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.49-50
    • /
    • 2009
  • We developed a new FRP-concrete composite deck applied to cable-stayed bridges, and verified the feasibility of design concept for negative moment zone in case of composition between this deck system and girder.

  • PDF

Flexural Behavior of RC Arch Deck Subjected to Static Loading (철근콘크리트 아치 데크의 정적 휨 거동)

  • Eom, Gi-Ha;Yang, Dal-Hun;Kim, Sung-Jae;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.4
    • /
    • pp.371-378
    • /
    • 2017
  • In this study, the flexural behavior of the RC Arch Deck under static loading was evaluated. Flexural test was carried out using an actual size RC Arch Deck with a length of 2.5 m, a center thickness of 100 mm and an end thickness of 160 mm. The test results showed that it's ultimate load was 1.74 times higher than the ultimate design load. On the other hand, it showed that the flexural behavior has different behaviors (i.e. different stiffness). This type of structural behavior indicates that it has inter-dependency between the deck and the supporting girder. Therefore, it is necessary to confirm the precise behavior by the static loading test of the RC Arch Deck, excluding the girder effect in the future study. The overall results showed that RC Arch Deck has excellent structural performance due to the structural advantages of the arch shape. In the future, the RC Arch Deck can be applied as a long span slab.

Experimental Study on the Cracking Loads of LB-DECKs with Varied Cross-Section Details (단면 상세가 변화된 LB-DECK의 균열하중에 대한 실험적 연구)

  • Youn, Seok-Goo;Cho, Gyu-Dae
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.657-665
    • /
    • 2011
  • LB-DECK, a precast concrete panel type, is a permanent concrete deck form used as a formwork for cast-in-place concrete pouring at bridge construction site. LB-DECK consists of 60 mm thick concrete slab and 125 mm height Lattice-girders partly embedded in the concrete slab. These decks have been applied to the bridges, which girder spacings are short enough to resist longitudinal cracking caused by construction loads. This paper presents experimental research work conducted to evaluate the cracking load of LB-DECKs designed for long span bridge decks. Twenty four non-composite beams and four composite beams are fabricated considering three design variables of thickness of concrete slab, height of lattice-girder, and diameter of top-bar. Static loads controlled by displacements are applied to test beams to obtain cracking and ultimate loads. Vertical displacements at the center of beams, strains of top-bar, crack propagation in concrete slab, and final failure modes are carefully monitored. The obtained cracking loads are compared to the analytical results obtained by elastic analyses. Long-term analyses using age-adjusted effective modulus method (AEMM) are also conducted to investigate the effects of concrete shrinkage on the cracking loads. Based on the test results, the tensile strength and the design details of LB-DECKs are discussed to prevent longitudinal cracking of long span bridge decks.