• Title/Summary/Keyword: 프롬프트 공학

Search Result 40, Processing Time 0.02 seconds

Improving Table Question Answering Using Prompt (프롬프트를 이용한 표 질의응답의 성능향상)

  • Jeongyeon Park;Donghyeok Lee;Hyeong Jin Shin;Kyungbeen Cho;Jae Sung Lee
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.395-398
    • /
    • 2023
  • 표 질의응답이란, 주어진 표에서 질의문에 대한 답변을 자동으로 추출하거나 생성하는 기술을 말한다. 최근 언어모델을 사용한 연구들은 정답을 유도할 수 있는 명령문인 프롬프트를 활용하여 더 높은 성능을 보이고 있다. 본 연구에서는 표 질의응답의 성능을 향상시키기 위해, 프롬프트를 효과적으로 사용할 수 있는 모델을 제안한다. 이와 함께, 다양한 형태의 프롬프트를 사용하여 모델을 평가한다. 실험 결과, 기본 모델에 단순 질의문만 입력으로 사용했을 때의 성능 F1 67.5%에 비해, 다양한 프롬프트를 입력으로 사용한 경우 1.6%p 향상된 F1 69.1%을 보였다. 또한, 다양한 프롬프트와 함께 제안 모델을 사용했을 때에는 기본 모델보다 2.2%p 높은 F1 69.7%을 달성했다.

  • PDF

Domain-specific Korean Relation Extraction system using Prompt with Meta-Information (메타 정보를 활용한 프롬프트 기반 도메인 특화 한국어 관계 추출)

  • Jinsung Kim;Gyeongmin Kim;Junyoung Son;Aram So;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.369-373
    • /
    • 2022
  • 기존의 관계 추출 태스크에서의 많은 연구들은 사전학습 언어모델을 파인튜닝하여 뛰어난 성능을 달성해왔다. 하지만, 파인튜닝은 사전학습 시의 학습 기법과의 간극으로 인해 일반화 능력을 저해한다. 본 연구는 다운스트림 태스크를 사전학습의 Masked Language Modeling (MLM) 기법을 통해 해결하는 프롬프트 기반의 학습 기법을 활용하여, 특정 한국어 도메인에서의 관계 추출을 위한 프롬프트 기반 파인튜닝 방법론을 제안한다. 실험의 경우, 도메인의 특성이 뚜렷한 전통문화유산 말뭉치를 대상으로 실험을 진행하여 본 방법론의 도메인 적응력을 보이며, 메타 정보 즉, 개체 유형 및 관계 유형의 의미론적 정보를 일종의 지식 정보로 활용하여 프롬프트 기반 지식 주입의 효과성을 검증한다. 프롬프트에의 메타 정보의 주입과 함께 프롬프트 기반으로 파인튜닝된 모델은 오직 MLM 기법만을 이용하여 태스크를 수행하여 기존 파인튜닝 방법론 대비 파라미터 수가 적음에도, 성능 면에서 대부분 소폭 상승하는 경향을 보여줌으로써 그 효과성 및 효율성을 보인다.

  • PDF

Stable Diffusion-based Prompt Engineering for Generating Virtual Interviewers (가상 면접관 생성을 위한 Stable Diffusion 기반의 프롬프트 엔지니어링)

  • Daemin Kim;Jongwook Si;Seungjae Son;Minsik Woo;Sungyoung Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.23-24
    • /
    • 2023
  • 가상 면접은 현대 사회에서 필수적인 기술이지만, 상호작용의 부족으로 인해 한계가 존재한다. 현실적이고 현장감 있는 가상 면접을 구현하기 위해서는 면접관을 자동으로 생성하여 다양한 상황에서의 면접을 진행할 필요가 있다. 본 논문은 Stable Diffusion 기반의 프롬프트 엔지니어링을 통해 가상 면접관 생성에 대한 연구 결과를 제시한다. 프롬프트 엔지니어링은 Stable Diffusion 모델이 생성하는 결과의 품질을 향상시킬 수 있으며 다양한 조건에 따른 실험 결과를 제시한다.

  • PDF

Various Prompt Methods for Korean Natural Language Inference (한국어 자연어 추론을 위한 다양한 프롬프트 방법 )

  • Yohan Choi;Changki Lee;Kyungman Bae
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.419-422
    • /
    • 2023
  • 자연어 추론은 전제 문장과 가설 문장의 관계를 함의, 중립, 모순으로 분류하는 자연어 처리 태스크이다. 최근 여러 자연어 처리 태스크에서 딥러닝 모델을 이용하는 방법이 우수한 성능을 보이고 있지만, 이는 미세 조정과정에 드는 비용이 많다는 점과 모델 출력의 근거, 과정을 사람이 이해하기 어려운 한계가 있다. 이러한 이유로 최근에는 소량의 입력, 출력 예시를 포함한 프롬프트를 이용한 방법론과 모델 출력에 대한 근거를 생성, 활용하는 방법에 관한 많은 연구가 진행되고 있다. 본 논문에서는 퓨샷 학습 환경의 한국어 자연어 추론 태스크를 위한 세 가지 프롬프트 방법과 이들을 조합하여 적용하는 방법을 제안한다. 이를 통해 '해석 가능성'과 자연어 추론 성능을 모두 향상시킬 수 있음을 보인다.

  • PDF

Text Classification using Cloze Question based on KorBERT (KorBERT 기반 빈칸채우기 문제를 이용한 텍스트 분류)

  • Heo, Jeong;Lee, Hyung-Jik;Lim, Joon-Ho
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.486-489
    • /
    • 2021
  • 본 논문에서는 KorBERT 한국어 언어모델에 기반하여 텍스트 분류문제를 빈칸채우기 문제로 변환하고 빈칸에 적합한 어휘를 예측하는 방식의 프롬프트기반 분류모델에 대해서 소개한다. [CLS] 토큰을 이용한 헤드기반 분류와 프롬프트기반 분류는 사전학습의 NSP모델과 MLM모델의 특성을 반영한 것으로, 텍스트의 의미/구조적 분석과 의미적 추론으로 구분되는 텍스트 분류 태스크에서의 성능을 비교 평가하였다. 의미/구조적 분석 실험을 위해 KLUE의 의미유사도와 토픽분류 데이터셋을 이용하였고, 의미적 추론 실험을 위해서 KLUE의 자연어추론 데이터셋을 이용하였다. 실험을 통해, MLM모델의 특성을 반영한 프롬프트기반 텍스트 분류에서는 의미유사도와 토픽분류 태스크에서 우수한 성능을 보였고, NSP모델의 특성을 반영한 헤드기반 텍스트 분류에서는 자연어추론 태스크에서 우수한 성능을 보였다.

  • PDF

Prompt-based Data Augmentation for Generating Personalized Conversation Using Past Counseling Dialogues (과거 상담대화를 활용한 개인화 대화생성을 위한 프롬프트 기반 데이터 증강)

  • Chae-Gyun Lim;Hye-Woo Lee;Kyeong-Jin Oh;Joo-Won Sung;Ho-Jin Choi
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.209-213
    • /
    • 2023
  • 최근 자연어 이해 분야에서 대규모 언어모델 기반으로 프롬프트를 활용하여 모델과 상호작용하는 방법이 널리 연구되고 있으며, 특히 상담 분야에서 언어모델을 활용한다면 내담자와의 자연스러운 대화를 주도할 수 있는 대화생성 모델로 확장이 가능하다. 내담자의 상황에 따라 개인화된 상담대화를 진행하는 모델을 학습시키려면 동일한 내담자에 대한 과거 및 차기 상담대화가 필요하지만, 기존의 데이터셋은 대체로 단일 대화세션으로 구축되어 있다. 본 논문에서는 언어모델을 활용하여 단일 대화세션으로 구축된 기존 상담대화 데이터셋을 확장하여 연속된 대화세션 구성의 학습데이터를 확보할 수 있는 프롬프트 기반 데이터 증강 기법을 제안한다. 제안 기법은 기존 대화내용을 반영한 요약질문 생성단계와 대화맥락을 유지한 차기 상담대화 생성 단계로 구성되며, 프롬프트 엔지니어링을 통해 상담 분야의 데이터셋을 확장하고 사용자 평가를 통해 제안 기법의 데이터 증강이 품질에 미치는 영향을 확인한다.

  • PDF

Prompt Tuning For Korean Aspect-Based Sentiment Analysis (프롬프트 튜닝기법을 적용한 한국어 속성기반 감정분석)

  • Bong-Su Kim;Hyun-Kyu Jeon;Seung-Ho Choi;Ji-Yoon Kim;Jung-Hoon Jang
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.50-55
    • /
    • 2023
  • 속성 기반 감정 분석은 텍스트 내에서 감정과 해당 감정이 특정 속성, 예를 들어 제품의 특성이나 서비스의 특징에 어떻게 연결되는지를 분석하는 태스크이다. 본 논문에서는 속성 기반 감정 분석 데이터를 사용한 다중 작업-토큰 레이블링 문제에 프롬프트 튜닝 기법을 적용하기 위한 포괄적인 방법론을 소개한다. 이러한 방법론에는 토큰 레이블링 문제를 시퀀스 레이블링 문제로 일반화하기 위한 감정 표현 영역 검출 파이프라인이 포함된다. 또한 분리된 시퀀스들을 속성과 감정에 대해 분류 하기 위한 템플릿을 선정하고, 데이터셋 특성에 맞는 레이블 워드를 확장하는 방법을 제안함으써 모델의 성능을 최적화한다. 최종적으로, 퓨샷 세팅에서의 속성 기반 감정 분석 태스크에 대한 몇 가지 실험 결과와 분석을 제공한다. 구축된 데이터와 베이스라인 모델은 AIHUB(www.aihub.or.kr)에 공개되어 있다.

  • PDF

Creating Sky Images according to Weather Conditions Using GAN (GAN을 활용한 기상조건에 따른 하늘 이미지 생성)

  • Cho Kyu Cheol;Jo Kang Hyeon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.293-296
    • /
    • 2024
  • 현재 생성형 AI가 활발히 연구되고 있는 가운데, 대부분의 이미지 생성 AI는 프롬프트를 기반으로 한 Text-To-Image 방식을 주로 사용하고 있다. 하지만, 프롬프트 기반의 생성 AI는 실제 서비스에 도입하기 어려운 점이 많다. 여러 이미지 중, 하늘 이미지는 메타버스 등 가상 공간에서 매우 자주 사용되는 이미지 중 하나이면서 여러 입력값에 의해 이미지가 달라진다. 이 논문에서는 GAN을 활용해 기상 조건에 적합한 하늘 이미지를 생성하는 프로그램을 설계 및 구현한다.

  • PDF

Knowledge-Grounded Dialogue Generation Using Prompts Combined with Expertise and Dialog Policy Prediction (전문 지식 및 대화 정책 예측이 결합된 프롬프트를 활용한 지식 기반 대화 생성)

  • Eojin Joo;Chae-Gyun Lim;DoKyung Lee;JunYoung Youn;Joo-Won Sung;Ho-Jin Choi
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.409-414
    • /
    • 2023
  • 최근 지식 기반 대화 생성에 많은 연구자가 초점을 맞추고 있다. 특히, 특정 도메인에서의 작업 지향형 대화 시스템을 구축하는 것은 다양한 도전 과제가 있으며, 이 중 하나는 거대 언어 모델이 입력과 관련된 지식을 활용하여 응답을 생성하는 데 있다. 하지만 현재 거대 언어 모델은 작업 지향형 대화에서 단순히 정보를 열거하는 방식으로 응답을 생성하는 경향이 있다. 이 논문에서는 전문 지식과 대화 정책 예측 모델을 결합한 프롬프트를 제시하고 작업 지향형 대화에서 사용자의 최근 입력에 대한 정보 제공 및 일상 대화를 지원하는 가능성을 탐구한다. 이러한 새로운 접근법은 모델 파인튜닝에 비해 비용 측면에서 효율적이며, 향후 대화 생성 분야에서 발전 가능성을 제시한다.

  • PDF

Prompt Engineering for Dark Web Ecosystem Analysis Based on Generative Artificial Intelligence (생성형 인공지능 기반의 다크웹 생태계 분석을 위한 프롬프트 엔지니어링)

  • Eun-Seon Ryu;Kyu-na Park;Seo-Yi Baik;Seongmin Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.646-647
    • /
    • 2024
  • 사이버 범죄가 증가함에 따라 익명성을 보장하는 암시장인 다크웹 내 불법적인 활동에 대한 모니터링의 중요성이 커졌다. 최근 다양한 분야에서 ChatGPT 의 쓰임이 주목받고 있듯이 다크웹에서도 전용 GPT 가 등장하였으며, 다크웹 생태계를 분석하고 정보를 수집하는데 이러한 다크웹 전용 생성형 인공지능 모델을 활용할 수 있다. 본 연구에서는 다크웹 GPT 에서 불법 행위와 관련된 질의를 통해 정보를 수집하고 해당 정보가 표면웹과 다크웹 상에서 다르게 쓰이고 있음을 확인함으로써 수사를 위한 다크웹 전용 GPT 활용 가능성 및 프롬프트 엔지니어링의 필요성을 탐구한다.