• Title/Summary/Keyword: 프로펠러 항공기

Search Result 64, Processing Time 0.022 seconds

A Study on Low-noise Propeller Shape Design using Composite Material Molding Method (복합소재 성형공법을 이용한 저소음 프로펠러 형상 설계에 관한 연구)

  • Ungjin Oh;Jin-Taek Lim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.25 no.1
    • /
    • pp.39-45
    • /
    • 2024
  • Recently, the paradigm of the aircraft industry, not only domestically but also globally, has been changing significantly starting with the era of the Fourth Industrial Revolution. With the convergence of new technologies such as ICT and AI, the drone market, centered around the military, is expanding its overall services to include the civilian market. Additionally, drones operate by being equipped with batteries, and for product lines that use batteries, lightening the product is one of the critical factors. This is because the lighter the aircraft, the less battery consumption and maximum efficiency. Therefore, recently, composite materials have been used to reduce the weight of the aircraft. To not only reduce weight but also achieve high functionality, it is being applied to most areas such as propellers, airframes, interior materials, floor plates, driving devices, and battery housings, and is emerging as a core technology. In this paper will utilize ceramic fiber composite materials, which have recently emerged for lightweight. It aims to improve noise and strength by targeting propellers, one of the most important factors in drones. In addition, the performance of the propeller developed through the low-noise design will be verified.

A Study on the Static Performance Test of a Reciprocating Engine for Small Aircraft (소형항공기용 왕복엔진의 정적 성능시험 연구)

  • 김근배;안석민;김근택;최선우
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.3
    • /
    • pp.53-60
    • /
    • 2003
  • A test stand was developed to measure static performance of a reciprocating engine on the ground, related to the small aircraft being developed by KARI. The test stand consists of an apparatus to install and operate a pusher-type propulsion system and a data acquisition system to process many performance parameters including engine torque and propeller thrust as well as monitoring of the engine operations. First, the performance data from the basic operation tests were compared with the original engine data so the capacity of the test stand was verified. Engine performance tests were carried out with various test conditions through three stages, and it was measured and analyzed that the manifold pressure, the torque, and the back pressure of the engine, and the static thrust of the propeller.

Aerodynamic Design of EAV Propeller using a Multi-Level Design Optimization Framework (다단 최적 설계 프레임워크를 활용한 전기추진 항공기 프로펠러 공력 최적 설계)

  • Kwon, Hyung-Il;Yi, Seul-Gi;Choi, Seongim;Kim, Keunbae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.3
    • /
    • pp.173-184
    • /
    • 2013
  • A multi-level design optimization framework for aerodynamic design of rotary wing such as propeller and helicopter rotor blades is presented in this study. Strategy of the proposed framework is to enhance aerodynamic performance by sequentially applying the planform and sectional design optimization. In the first level of a planform design, we used a genetic algorithm and blade element momentum theory (BEMT) based on two-dimensional aerodynamic database to find optimal planform variables. After an initial planform design, local flow conditions of blade sections are analyzed using high-fidelity CFD methods. During the next level, a sectional design optimization is conducted using two dimensional Navier-Stokes analysis and a gradient based optimization algorithm. When optimal airfoil shape is determined at the several spanwise locations, a planform design is performed again. Through this iterative design process, not only an optimal flow condition but also an optimal shape of an EAV propeller blade is obtained. To validate the optimized propeller-blade design, it is tested in wind-tunnel facility with different flow conditions. An efficiency, which is slightly less than the expected improvement of 7% predicted by our proposed design framework but is still satisfactory to enhance the aerodynamic performance of EAV system.

The Study of Advanced Propeller Blade for Next Generation Turboprop Aircraft -Part II. Static Structural Design and Test (차세대 터보프롭 항공기용 최신 프로펠러 블레이드 연구 -Part II. 정적 구조 설계 및 시험)

  • Choi, Won;Park, Hyun-Bum;Kong, Chang-Duk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.4
    • /
    • pp.336-343
    • /
    • 2014
  • Modern advanced-turboprop propellers are required to have high structural strength to cope with the thrust requirement at high speed. The high stiffness and strength carbon/epoxy composite material is used for the major structure and skin-spar-foam sandwich structural type is adopted for advantage in terms of the blade weight. As a design procedure for the present study, the structural design load is estimated through investigation on aerodynamic load and then flanges of spars from major bending loads and the skin from shear loads are sized using the netting rule and Rule of Mixture. In order to investigate the structural safety and stability, stress analysis is performed by finite element analysis code MSC. NASTRAN. It is found that current methodology of composite structure design is a valid method through the static structural test of prototype blade.

Thrust and torque prediction of multicopter propeller in hovering based on BET method (BET 기법을 이용한 멀티콥터 프로펠러의 정지비행시 추력 및 토크 계산)

  • Lee, Bumsik;Woo, Heeseung;Lee, Dogyeong;Chang, Kyoungsik;Lee, Dongjin;Kim, Minwoo
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.6
    • /
    • pp.23-31
    • /
    • 2018
  • In the present work, the thrust and torque of multicopter propellers in hovering are predicted based on BET method. The geometry information of the propellers is obtained using a three dimensional scanner and the airfoil section is extracted using CATIA. EDISON CFD is adopted to calculate the drag and lift of airfoil at a given geometry and flow conditions and then thrust is calculated with respect to a given RPMs based on BET. Two simulations with laminar and turbulent flows are considered. The predicted value is compared with the performance data from the Product Company and results from JavaProp software, which is used in the design and prediction of propellers. In the case of a 9-inch propeller, the thrust from the product company is corresponding to the results between the laminar and turbulent flow conditions. In the 16-inch case, the predicted thrust at turbulent flow conditions conformed well with reference one. The predicted torque shows a big difference with the reference data.

Analysis of Customer Needs upon the Cockpit Layout of a Single Piston Aircraft (단발 피스톤 항공기의 조종석 형태에 대한 고객 요구도 분석)

  • Song, Byung-Heum;Lee, Sang-Chul;Sung, Hong-Gye;Moon, Hee-Jang;Shim, Sang-Hyun;An, Joon-Sung;Ko, You-Ri;Kim, Kwang-Hae
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.1
    • /
    • pp.58-63
    • /
    • 2009
  • The objective of this study is to analyze customer needs for the configuration of an aircraft cockpit layout of a single piston propeller aircraft. From the result of survey, we figure out the demand of the potential customers. We consider control stick and instrument out of several items to determine which pay for the aircraft or not. We analyze types and features of the aircraft control stick and the instrument which are equipped in the same aircraft in order to figure out what is best needed through a market survey and a questionnaire survey.

  • PDF

A Study on Parts Manufacturer Approval in Civil Aviation Law (항공기 부품제작자증명에 관한 연구)

  • Lee, Kang-Yi;Jin, Young-Kwon;Lee, Jong-Hee;Lee, Kwang-Hee
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.17
    • /
    • pp.133-152
    • /
    • 2003
  • Certification by Civil Aviation Law is necessary for aircraft parts and appliances as well as aircraft, engines, and propellers to ensure safety and reliability in operation. Advanced countries in aerospace industry as like U.S.A require Parts Manufacturer Approval for aircraft parts and Technical Standard Order Authorization for designated appliances. However, there are no legal requirements for certification of aircraft parts and appliances in Korea until now. This study presents the draft to revise Civil Aviation Law, which is applicable to set up domestic certification system and maintain it equivalent to U.S. Federal Aviation Regulation.

  • PDF

A study on the control law of Automatic Rudder Trim System for turbo prop aircraft (터보 프롭 항공기 자동러더트림장치 제어법칙에 관한 연구)

  • 박완기;이광현;김병수
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.121-131
    • /
    • 1999
  • Automatic Rudder Trim System(ARTS) is a device to reduce the pilot's work load for rudder trimming greatly required in varying abruptly aircraft's engine power. This paper represents a technical analysis and a design of control law of the ARTS. The control law of the ARTS is designed based on the analysis of aircraft's characteristics, system's requirements, and limitations. The control law is comprised of open loop control using the rudder trim map for a specific aircraft and closed loop control to compensate the error of the open loop control system. flight test results show that the ARTS can reduce pilot's work load for rudder trimming dramatically and can compensate the aircraft's transient yaw motion.

  • PDF

A Study on the Risk-based Model for Validation of Civil Aircraft (민간항공기 형식증명승인을 위한 위험기반 모델 개발 동향)

  • Baek, Unryul;Lee, Eunhee;Kim, Jinhee;Lee, Kyungchul
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.4
    • /
    • pp.1-8
    • /
    • 2018
  • The state of registry issues a type certificate validation (TCV) based on the satisfactory evidence that the product (aircraft, engine, and propeller) is in compliance with the appropriate airworthiness requirements. The Korean government performs an evaluation to determine whether the product complies with Korean airworthiness standards for issuing TCV according to the Korean aviation safety law. Recently, the Validation Principles Working Group (VPWG) has developed a risk-based model for validation of civil aeronautical products. Also, VPWG proposed to incorporate this validation model into the corresponding ICAO Standards and Recommended Practices and guidance material. In this paper, we have reviewed the validation model and discussed improvements in the validation process.

Design and Development of SNU MAV using Experimental Studies (실험적 연구를 통한 SNU 초소형 비행체 설계 및 개발)

  • 이영빈;김종암;김규홍;김우례
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.11
    • /
    • pp.9-17
    • /
    • 2006
  • The SNU MAV has been designed through studies on highly efficient aerodynamic shape and propulsion system. The configuration of the vehicle was determined from conventional empirical equations, iterative wind tunnel tests and flight tests. The propeller shape was optimized with the various thrust tests and RSM(Response Surface Method) to obtain the higher efficient propulsion system. It was certified that the MAV could fly for over 17 minutes with a 210mAh battery. In addition, it showed good flight characteristics in both stability and controllability.