• Title/Summary/Keyword: 프로파일분류

Search Result 215, Processing Time 0.027 seconds

A Comparison of cluster analysis based on profile of LPGA player profile in 2009 (2009년 여자프로골프선수 프로파일을 이용한 군집방법비교)

  • Min, Dae-Kee
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.3
    • /
    • pp.471-480
    • /
    • 2010
  • Cluster analysis is one of the useful methods to find out number of groups and member’s belongings. With the rapid development of computer application in statistics, variety of new methods in clustering analysis were studied such as EM algorism and Self organization maps. The goals of cluster analysis is finding the number of groupings that are meaningful to me. If data are analyzed perfectly with cluster analysis, we can get the same results from discernment analysis.

Classifying Windows Executables using API-based Information and Machine Learning (API 정보와 기계학습을 통한 윈도우 실행파일 분류)

  • Cho, DaeHee;Lim, Kyeonghwan;Cho, Seong-je;Han, Sangchul;Hwang, Young-sup
    • Journal of KIISE
    • /
    • v.43 no.12
    • /
    • pp.1325-1333
    • /
    • 2016
  • Software classification has several applications such as copyright infringement detection, malware classification, and software automatic categorization in software repositories. It can be also employed by software filtering systems to prevent the transmission of illegal software. If illegal software is identified by measuring software similarity in software filtering systems, the average number of comparisons can be reduced by shrinking the search space. In this study, we focused on the classification of Windows executables using API call information and machine learning. We evaluated the classification performance of machine learning-based classifier according to the refinement method for API information and machine learning algorithm. The results showed that the classification success rate of SVM (Support Vector Machine) with PolyKernel was higher than other algorithms. Since the API call information can be extracted from binary executables and machine learning-based classifier can identify tampered executables, API call information and machine learning-based software classifiers are suitable for software filtering systems.

A Wavelet-based Profile Classification using Support Vector Machine (SVM을 이용한 웨이블릿 기반 프로파일 분류에 관한 연구)

  • Kim, Seong-Jun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.718-723
    • /
    • 2008
  • Bearing is one of the important mechanical elements used in various industrial equipments. Most of failures occurred during the equipment operation result from bearing defects and breakages. Therefore, monitoring of bearings is essential in preventing equipment breakdowns and reducing unexpected loss. The purpose of this paper is to present an online monitoring method to predict bearing states using vibration signals. Bearing vibrations, which are collected as a form of profile signal, are first analyzed by a discrete wavelet transform. Next, some statistical features are obtained from the resultant wavelet coefficients. In order to select significant ones among them, analysis of variance (ANOVA) is employed in this paper. Statistical features screened in this way are used as input variables to support vector machine (SVM). An hierarchical SVM tree is proposed for dealing with multi-class problems. The result of numerical experiments shows that the proposed SVM tree has a competent performance for classifying bearing fault states.

Classification of Documents using Automatic Indexing (자동 색인을 이용한 문서의 분류)

  • 신진섭;장수진
    • Journal of the Korea Society of Computer and Information
    • /
    • v.4 no.1
    • /
    • pp.21-27
    • /
    • 1999
  • In this paper. we propose a new method for automatic classification of documents using the degree of similarity between words. First, we seek relevance terms using automatic indexing. Second, we found frequency in use words in documents and the degree of relevance between the words using probability model. Continuously, we extracted the set of words which is connected the relevance closely and created the profiles characterizing each classification And, with the profile we finally classified them. We experimented on classifying two groups of documents. Some documents were about Genetic Algorithm. The others were about Neural Network. The results of the experiments indicated that automatic classification with word accordance of degree enable us to manage the retrieved documents structurally.

  • PDF

A Wavelet-based Profile Classification using Support Vector Machine (SVM을 이용한 웨이블릿기반 프로파일분류에 관한 연구)

  • Kim, Seong-Jun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.3-6
    • /
    • 2008
  • 베어링은 각종 설비에서 활용하는 중요한 기계요소 중 하나이다. 설비고장의 상당수는 베어링의 결함이나 파손에 기인하고 있다. 따라서 베어링에 대한 온라인모니터링기술은 설비의 정지를 예방하고 손실을 줄이는 데 필수적이다. 본 논문은 진동신호를 이용하여 베어링의 상태를 예측하기 위한 온라인모니터링에 대해 연구한다. 프로파일로 주어지는 진동신호는 이산웨이블릿변환을 통해 분석되고, 분해수준별 웨이블릿계수로부터 얻은 통계적 특징 중 유의한 것을 선별하고자 분산분석 (ANOVA)을 이용한다. 선별된 특징벡터는 Support Vector Machine (SVM)의 입력이 되는 데, 본 논문에서는 다중클래스 분류문제를 다루기 위한 계층적 SVM 네트워크를 제안한다.

  • PDF

A Study on Tools for Agent System Development (비 감독 학습방법 클러스터링을 이용한 웹 에이전트 효율성 향상에 대한 연구)

  • Kim, Ji-Ha;Kwak, Joo-Hyun;Kim, Hyo-Rae;Lee, Chang-Hun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2000.10a
    • /
    • pp.297-300
    • /
    • 2000
  • 클러스터링을 이용해서 문서를 자동으로 분류함으로서 주제별 프로파일을 생성한 후에 사용자의 취향변화에 신속하게 대응할 수 있는 에이전트의 프로파일관리 및 검색관리기법에 대한 연구

  • PDF

CC보안기능 요구사항과 PP에서의 해석

  • 김석우
    • Review of KIISC
    • /
    • v.10 no.3
    • /
    • pp.37-48
    • /
    • 2000
  • 국제 공통평가기준(CC)은 정보보호제품의 개발·평가·사용을 위한 ISO 15048 국제 표준이다. 국제 공통평가기준의 제 2부 보안기능 요구사항은 정보보호제품의 보안 기능을 11개 클래스로 분류하였고 13개국 인증제품 상호승인 협정(MRA)에 의하여 교차 사용이 가능한 평가된 보안제품을 해설할 수 있는 공통언어로써 사용할 수 있다 보호프로파일(PP)은 특정형태의 제품군의 지녀야 할 보안 목적을 사용자 그룹에서 요구한 명세서이다. 보호프로파일은 제품군의 운영환영, 위협요소를 분석하고 보안기능 요구사항의 부분 집합들을 모아서 제품군이 목표로 하는 보안 목적들을 주장할 수 있다.

  • PDF

Estimation of Chemical Speciation and Temporal Allocation Factor of VOC and PM2.5 for the Weather-Air Quality Modeling in the Seoul Metropolitan Area (수도권 지역에서 기상-대기질 모델링을 위한 VOC와 PM2.5의 화학종 분류 및 시간분배계수 산정)

  • Moon, Yun Seob
    • Journal of the Korean earth science society
    • /
    • v.36 no.1
    • /
    • pp.36-50
    • /
    • 2015
  • The purpose of this study is to assign emission source profiles of volatile organic compounds (VOCs) and particulate matters (PMs) for chemical speciation, and to correct the temporal allocation factor and the chemical speciation of source profiles according to the source classification code within the sparse matrix operator kernel emission system (SMOKE) in the Seoul metropolitan area. The chemical speciation from the source profiles of VOCs such as gasoline, diesel vapor, coating, dry cleaning and LPG include 12 and 34 species for the carbon bond IV (CBIV) chemical mechanism and the statewide air pollution research center 99 (SAPRC99) chemical mechanism, respectively. Also, the chemical speciation of PM2.5 such as soil, road dust, gasoline and diesel vehicles, industrial source, municipal incinerator, coal fired, power plant, biomass burning and marine was allocated to 5 species of fine PM, organic carbon, elementary carbon, $NO_3{^-}$, and $SO_4{^2-}$. In addition, temporal profiles for point and line sources were obtained by using the stack telemetry system (TMS) and hourly traffic flows in the Seoul metropolitan area for 2007. In particular, the temporal allocation factor for the ozone modeling at point sources was estimated based on $NO_X$ emission inventories of the stack TMS data.

A Content-based TV Program Recommendation System Using Age and Plots (연령 및 프로그램 줄거리를 활용한 콘텐츠 기반 TV 프로그램 추천 시스템)

  • Bang, Hanbyul;Lee, HyeWoo;Lee, Jee-Hyong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.01a
    • /
    • pp.51-54
    • /
    • 2015
  • 추천 시스템의 대표적인 연구 중 하나인 콘텐츠 기반 추천 시스템 연구는 TV 프로그램이나 영화의 줄거리, 장르, 리뷰 등의 콘텐츠의 메타데이터를 이용한다. 그러나 이러한 연구들은 콘텐츠 관련 정보에만 의존할 뿐, 시청자의 프로파일과 콘텐츠의 정보를 함께 고려하지 않는다. 본 논문에서는 시청자의 프로파일 중 연령과 콘텐츠의 정보인 프로그램의 줄거리를 활용한 TV 프로그램 추천 시스템을 제안한다. 본 추천 시스템은 시청자를 연령에 따라 분류한 후, LDA 알고리즘을 이용하여 시청자의 시청 TV 프로그램의 줄거리를 분류된 나이에 따라 각각의 줄거리 토픽 모델로 생성한다. 이를 기준으로 시청자가 원하는 시간대에 방송되는 프로그램들의 줄거리 토픽벡터와 시청자의 선호도 토픽벡터의 유사도를 비교해 가장 유사도가 높은 TV 프로그램을 시청자에게 추천하는 방식이다. 본 논문에서는 연구의 효용성을 검증하기 위해 줄거리만을 사용한 경우와 줄거리와 연령을 동시에 활용한 경우를 비교 실험하였다. 실험을 통해 프로그램의 줄거리만을 사용한 경우보다 연령을 동시에 활용한 경우의 추천 시스템 성능이 개선된 것을 확인할 수 있었다.

  • PDF