Classification of Documents using Automatic Indexing

자동 색인을 이용한 문서의 분류

  • 신진섭 (대전 보건대학 사무자동학과) ;
  • 장수진 (대전 보건대학 전산정보처리과)
  • Published : 1999.03.01

Abstract

In this paper. we propose a new method for automatic classification of documents using the degree of similarity between words. First, we seek relevance terms using automatic indexing. Second, we found frequency in use words in documents and the degree of relevance between the words using probability model. Continuously, we extracted the set of words which is connected the relevance closely and created the profiles characterizing each classification And, with the profile we finally classified them. We experimented on classifying two groups of documents. Some documents were about Genetic Algorithm. The others were about Neural Network. The results of the experiments indicated that automatic classification with word accordance of degree enable us to manage the retrieved documents structurally.

본 논문은 단어들의 유사도를 이용하여 문서들을 자동으로 분류하는 새로운 방법을 제안한다. 단어들 중에서 의미있는 단어들을 찾아내기 위하여 자동색인 방법을 이용하였으며. 두 번째로 본 논문에서 제안한 확률 모델을 이용하여 각 단어들의 문서와의 연관관계를 분석하였다. 이를 토대로 분류를 가능하게 하기 위한 프로파일을 생성한다. 본 논문에서는 유전자 알고리즘과 신경망에 관련된 10개의 문서에 대하여 실험하여 유전자 알고리즘과 신경망에 해당하는 프로파일을 생성하였다.

Keywords