• Title/Summary/Keyword: 풍황자원 평가

Search Result 10, Processing Time 0.028 seconds

Verification of the Validity of WRF Model for Wind Resource Assessment in Wind Farm Pre-feasibility Studies (풍력단지개발 예비타당성 평가를 위한 모델의 WRF 풍황자원 예측 정확도 검증)

  • Her, Sooyoung;Kim, Bum Suk;Huh, Jong Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.9
    • /
    • pp.735-742
    • /
    • 2015
  • In this paper, we compare and verify the prediction accuracy and feasibility for wind resources on a wind farm using the Weather Research and Forecasting (WRF) model, which is a numerical weather-prediction model. This model is not only able to simulate local weather phenomena, but also does not require automatic weather station (AWS), satellite, or meteorological mast data. To verify the feasibility of WRF to predict the wind resources required from a wind farm pre-feasibility study, we compare and verify measured wind data and the results predicted by WAsP. To do this, we use the Pyeongdae and Udo sites, which are located on the northeastern part of Jeju island. Together with the measured data, we use the results of annual and monthly mean wind speed, the Weibull distribution, the annual energy production (AEP), and a wind rose. The WRF results are shown to have a higher accuracy than the WAsP results. We therefore confirmed that WRF wind resources can be used in wind farm pre-feasibility studies.

A study on 750kW Wind farm at Taean Costal National Park using WindPRO (WindPRO를 이용한 태안해안국립공원의 750kW 풍력발전단지 조성에 관한 연구)

  • Jeong, Yunmi;Kim, Jaekwang;Kim, Youngdal
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.181.2-181.2
    • /
    • 2010
  • 탄소함유 에너지원의 고갈과 가격상승, 이들 에너지 사용에 수반되는 지구 온난화 문제들로 세계는 새로운 에너지원을 도입하고자 노력하고 있다. 그 중 풍력에너지는 자원이 풍부하고 끊임없이 재생되며 광범위한 지역에 분포되어 있고, 운전 중에 온실가스의 배출이 없다는 점에서 가장 경제성이 있고 유용한 에너지원으로 인식되고 있다. 풍력발전기는 선진 국가에서부터 꾸준히 성장해 왔으며, 그 성능을 개선시키기 위하여 많은 연구가 진행되고 있다. 풍력발전기를 설치하여 발전단지를 조성함에 있어서 발전량을 예측하기 위해서 발전기가 세워질 모든 지점에 허브높이의 실측타워를 세워 풍황데이터를 측정하여야 하지만 이런 방법은 재정적인 부담이 매우 크다. 따라서 본 논문에서는 서산기상대에서 측정된 기상데이터를 이용하여 태안해안국립공원내 만리포해수욕장 지역의 풍황 및 발전량을 예측하였다. 이 때 풍황 및 발전량 예측은 풍력단지 설계를 목적으로 사용되고 있는 WindPRO Basic과 WAsP-Interface 모듈을 이용하였다. 이렇게 예측된 풍황을 이용하여 발전단지를 조성하고, PARK 모듈을 사용하여 발전단지의 에너지를 계산하였으며, WindBANK 모듈을 이용하여 단지의 경제성을 평가하였다.

  • PDF

Met-tower Shading Correction Program KIER-$ShadeFree^{TM}$ (풍황탑 차폐영향 보정 프로그램 KIER-$ShadeFree^{TM}$)

  • Kim, Hyun-Goo;Jeong, Tae-Yoon;Jang, Moon-Seok;Jeon, Wan-Ho;Yoon, Seong-Wook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.190.1-190.1
    • /
    • 2010
  • 풍력자원평가를 위해 풍력단지 개발대상지의 국지풍황 대표지점에 설치하는 풍황탑(met-tower 또는 풍황마스트; met-mast)은 모노폴(monopole), 삼각단면 트러스 또는 사각단면 트러스 구조를 갖는다. 풍향계 및 풍속계는 이러한 지지구조물에 의한 풍속의 교란 또는 차폐영향을 최소화하기 위하여 긴 붐(boom)의 끝단에 설치되지만 계측기가 풍황탑의 직후방 후류영역에 놓이게 될 경우 차폐영향을 완전히 피하기는 어렵다. 저자들의 선행연구에 따르면 풍황탑 차폐영향은 평균풍력밀도의 경우 2.5% 이상의 오차를 유발할 수 있으므로 풍력자원평가 시 필히 고려되어야 할 불확도 요인인 것이다. 이에 한국에너지기술연구원에서는 풍황탑 주위의 대기유동장을 전산유동해석을 이용하여 차폐영향의 정도를 정량적으로 수치모사함으로써 이를 보정하는 기술을 개발한 바 있다(현재 특허심사 중). KIER-$ShadeFree^{TM}$는 이 특허기술을 프로그램화 한 것으로, 시범적으로 다수의 풍황탑 풍력자원 측정자료에 적용하여 상당한 보정효과에 의한 풍력자원평가의 정확도 향상효과를 볼 수 있었다.

  • PDF

Wind Speed Prediction using WAsP for Complex Terrain (복합지형에 대한 WAsP의 풍속 예측성 평가)

  • Yoon, Kwang-Yong;Yoo, Neung-Soo;Paek, In-Su
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.199-207
    • /
    • 2008
  • A linear wind prediction program, WAsP, was employed to predict wind speed at two different sites located in complex terrain in South Korea. The reference data obtained at locations more than 7 kilometers away from the prediction sites were used for prediction. The predictions from the linear model were compared with the measured data at the two prediction sites. Two compensation methods such as a self-prediction error method and a delta ruggedness index (RIX) method were used to improve the wind speed prediction from WAsP and showed a good possibility. The wind speed prediction errors reached within 3.5 % with the self prediction error method, and within 10% with the delta RIX method. The self prediction error method can be used as a compensation method to reduce the wind speed prediction error in WAsP.

  • PDF

Uncertainty Analysis on Vertical Wind Profile Measurement of LIDAR for Wind Resource Assessment (풍력자원평가를 위한 라이다 관측 시 풍속연직분포 불확도 분석)

  • Kim, Hyun-Goo;Choi, Ji-Hwee;Jang, Moon-Seok;Jeon, Wan-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.185.1-185.1
    • /
    • 2010
  • 원격탐사(remote sensing)란 관측 대상과의 접촉 없이 멀리서 정보를 얻어내는 기술을 말한다. 기상관측분야에는 이미 소다(SODAR) 장비가 폭넓게 사용되거 왔으나 최근 풍력자원평가(wind resource assessment)를 위한 풍황측정에 SODAR와 더불어 라이다(LIDAR)가 적극적으로 활용되기 시작하고 있다. 참고로 SODAR(SOnic Detection And Ranging)는 수직 및 동서 남북 방향으로 음파를 발생시키고 대기유동에 의해 산란 반사된 에코를 수신하여 진동수 변화와 반사에코 강도를 측정하여 각 방향의 에코자료를 벡터 합성함으로써 풍향 및 풍속을 산출하는 원리이다. 반면 LIDAR(Light Detection And Ranging)는 비교적 최근에 풍황측정 용도로 개발된 레이저 탐지에 바탕을 둔 원거리 센서로, 공기입자(먼지, 수증기, 구름, 안개, 오염물질 등)에 의해 산란된 레이저 발산의 도플러 쉬프트(Doppler shift)를 이용하여 풍향 및 풍속을 측정하는 원격탐사 장비이다. 풍력자원평가 측면에서 라이다는 그 정확도가 IEC61400-12에 의거한 풍황탑(met-mast) 측정자료 다수와의 비교검증 실측평가(Albers et al., 2009)를 통하여 입증된 바 있다. 한편 한국에너지기술연구원에서 운용 중인 라이다 시스템은 그림 1의 우측 그림과 같이 1초에 $360^{\circ}$를 스캔하여 50지점에서 반사되는 레이저를 스펙트럼으로 측정하되 설정된 관측높이에서 풍속은 샘플링 부피(sampling volume)의 평균값으로 정의된다. 그런데 샘플링 부피는 설정된 관측높이로부터 상하 12.5m, 총 25m의 높이구간에서 관측한 스펙트럼의 평균값을 그 중앙지점에서의 풍속으로 환산하는 알고리듬(algorithm)을 채택하고 있다. 따라서 비선형적으로 변화하는 풍속연직분포 관측 시 풍속환산 알고리듬에 의한 측정오차가 개입될 가능성이 존재하는 것이다. 이에 본 연구에서는 라이다에 의한 풍속연직분포 측정 시 샘플링 부피의 구간 평균화 과정에서 발생하는 불확도(uncertainty)를 정량적으로 분석함으로써 라이다에 의한 풍속연직분포 관측의 불확도를 정량평가하고자 한다.

  • PDF

Wind Speed Prediction using WAsP for Complex Terrain (WAsP을 이용한 복잡지형의 풍속 예측 및 보정)

  • Yoon, Kwang-Yong;Paek, In-Su;Yoo, Neung-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.268-273
    • /
    • 2008
  • A linear wind prediction program, WAsP, was employed to predict wind speed at two different sites located in complex terrain in South Korea. The reference data obtained at locations more than 7 kilometers away from the prediction sites were used for prediction. The predictions from the linear model were compared with the measured data at the two prediction sites. Two compensation methods such as a self-prediction error method and a delta ruggedness index (RIX) method were used to improve the wind speed prediction from WAsP and showed a good possibility. The wind speed prediction errors reached within 3.5 % with the self prediction error method, and within 10% with the delta RIX method. The self prediction error method can be used as a compensation method to reduce the wind speed prediction error in WAsP.

  • PDF

Estimation of Annual Energy Production Based on Regression Measure-Correlative-Predict at Handong, the Northeastern Jeju Island (제주도 북동부 한동지역의 MCP 회귀모델식을 적용한 AEP계산에 대한 연구)

  • Ko, Jung-Woo;Moon, Seo-Jeong;Lee, Byung-Gul
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.6
    • /
    • pp.545-550
    • /
    • 2012
  • Wind resource assessment is necessary when designing wind farm. To get the assessment, we must use a long term(20 years) observed wind data but it is so hard. so that we usually measured more than a year on the planned site. From the wind data, we can calculate wind energy related with the wind farm site. However, it calculate wind energy to collect the long term data from Met-mast(Meteorology Mast) station on the site since the Met-mast is unstable from strong wind such as Typhoon or storm surge which is Non-periodic. To solve the lack of the long term data of the site, we usually derive new data from the long term observed data of AWS(Automatic Weather Station) around the wind farm area using mathematical interpolation method. The interpolation method is called MCP(Measure-Correlative-Predict). In this study, based on the MCP Regression Model proposed by us, we estimated the wind energy at Handong site using AEP(Annual Energy Production) from Gujwa AWS data in Jeju. The calculated wind energy at Handong was shown a good agreement between the predicted and the measured results based on the linear regression MCP. Short term AEP was about 7,475MW/year. Long term AEP was about 7,205MW/year. it showed an 3.6% of annual prediction different. It represents difference of 271MW in annual energy production. In comparison with 20years, it shows difference of 5,420MW, and this is about 9 months of energy production. From the results, we found that the proposed linear regression MCP method was very reasonable to estimate the wind resource of wind farm.

Case Study on Offshore Wind Resource and Energy Yield Assessment in South Korea According to International Standard Guidelines (국제 표준 지침에 따른 국내 풍력자원 및 연간발전량 평가 방법에 관한 사례 분석 연구)

  • Geonhwa Ryu;Dohee Lee;Hyojeong Kim;Okan Sargin
    • Journal of Wind Energy
    • /
    • v.15 no.3
    • /
    • pp.38-61
    • /
    • 2024
  • The purpose of this study is to introduce in detail an universal methodology of wind resource and energy yield assessment for feasibility studies of offshore wind projects. To conduct a preliminary feasibility study for offshore wind projects, an assessment of wind resources and energy yield are usually performed at an early stage, and this can be an essential process for deriving an economic feasibility evaluation of the project. However, many domestic case studies and preliminary feasibility studies are still conducted using methodologies that lack valid evidence and professionalism. Accordingly, this study introduces methods for general wind resource assessments, wind farm layout (design), and energy yield assessments, and gives detailed reasons why the analysis procedure is necessary. In other words, it was carried out to support to improve the quality and level of basic research related to domestic offshore wind studies.

Optimal Site Selection of Floating Offshore Wind Farm using Genetic Algorithm (유전 알고리즘을 활용한 부유식 해상풍력단지 최적위치 선정)

  • Lee, Jeong-Seok;Son, Woo-Ju;Lee, Bo-Kyeong;Cho, Ik-Soon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.658-665
    • /
    • 2019
  • Among the renewable energy resources, wind power is growing rapidly in terms of technological development and market share. Recently, onshore wind farm have been affected by limitations of terrestrial space and environmental problems. Consequently, installation sites have been moved to the sea, and the development of floating offshore wind farms that are installed at deep waters with more abundant wind conditions is actively underway. In the context of maritime traffic, the optimal site of offshore wind farms is required to minimize the interference between ships and wind turbines and to reduce the probability of accidents. In this study, genetic algorithm based AIS(Automatic Indentification System) data composed of genes and chromosomes has been used. The optimal site of floating offshore wind farm was selected by using 80 genes and by evaluating the fitness of genetic algorithm. Further, the final site was selected by aggregating the seasonal optimal site. During analysis, 11 optimal site were found, and it was verified that the final site selected usng the genetic algorithm was viable from the perspective of maritime traffic.

The Study on Assessment of Roughness Coefficient for Designing Wind Farm in Jeju Island (제주도 풍력발전단지 설계를 위한 조도계수 산정에 대한 연구)

  • Ko, Jung-Woo;Quan, He Chun;Lee, Byung-Gul
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.2
    • /
    • pp.15-22
    • /
    • 2012
  • The variation in the wind speed with height above ground is called the wind shear profile. In the field of wind resource assessment, analysts typically use one of two mathematical relations to characterize the measured wind shear profile: the logarithmic profile (log law) and the power law profile (power law). The logarithmic law uses the surface roughness as a parameter, and the power law uses the power law exponent as a parameter. The shape of the wind shear profile typically depends on several factors, most notably the roughness of the surrounding terrain and the stability of the atmosphere. Since the atmospheric stability changes with season, time of day, and meteorological conditions, the surface roughness and the power law exponent also tends to change in time. For this study, Using the observed data from Met-mast, located in Pyeongdae, Handong in Jeju. we used the matlab and windograper to calculate roughness length and the law exponents. These calculations are similar to reference the data, but they have different ranges. In the ocean case, each reference data and calculated data was the same, but the crop area is higher than the earlier studies. In addition, the agricultural village is lower than the earlier studies.