• Title/Summary/Keyword: 풍력발전기 드라이브트레인

Search Result 11, Processing Time 0.036 seconds

A Study on Machine Learning of the Drivetrain Simulation Model for Development of Wind Turbine Digital Twin (풍력발전기 디지털트윈 개발을 위한 드라이브트레인 시뮬레이션 모델의 기계학습 연구)

  • Yonadan Choi;Tag Gon Kim
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.3
    • /
    • pp.33-41
    • /
    • 2023
  • As carbon-free has been getting interest, renewable energy sources have been increasing. However, renewable energy is intermittent and variable so it is difficult to predict the produced electrical energy from a renewable energy source. In this study, digital-twin concept is applied to solve difficulties in predicting electrical energy from a renewable energy source. Considering that rotation of wind turbine has high correlation with produced electrical energy, a model which simulates rotation in the drivetrain of a wind turbine is developed. The base of a drivetrain simulation model is set with well-known state equation in mechanical engineering, which simulates the rotating system. Simulation based machine learning is conducted to get unknown parameters which are not provided by manufacturer. The simulation is repeated and parameters in simulation model are corrected after each simulation by optimization algorithm. The trained simulation model is validated with 27 real wind turbine operation data set. The simulation model shows 4.41% error in average compared to real wind turbine operation data set. Finally, it is assessed that the drivetrain simulation model represents the real wind turbine drivetrain system well. It is expected that wind-energy-prediction accuracy would be improved as wind turbine digital twin including the developed drivetrain simulation model is applied.

Analysis of Resonance for Drive-train in Wind Turbine (풍력발전기 드라이브트레인 공진 해석)

  • Leem, Sang-Hyuck;Park, Sun-Ho;Bang, Jo-Hyug;Chung, Chin-Wha;Ryu, Ji-Yune
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.1
    • /
    • pp.20-27
    • /
    • 2017
  • This study investigated the problems in current practice of drive-train resonance analysis procedure and suggested solutions. The first problem is the resonance occurrence at the un-identified resonance point by the current practice, as for a solution the force spectrum analysis for each critical force transmitting component was suggested. The second one is the inaccurate estimation of potential resonance point in eigenfrequency analysis because of the non-consideration about the eigenfrequency dependency on rotor-speed, the fine linearization at each rotor speed point all over operational range was proposed to account for the affection. Lastly the insufficient time for resonance activation under run-up simulation condition was recognized as a problem in resonance load increasing analysis, as an alternative, steady state condition was suggested to estimate the maximum load increasing level.

Patent map for wind turbine component (풍력발전기 요소기술의 특허맵 분석)

  • Shin, Hyun-Ki;Jang, Moon-Seok;Bang, Hyung-Joon;Kim, Yong-Ki;Lee, Yu-Mi
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.297-299
    • /
    • 2008
  • 기술 개발과 산업화에 있어 현대 사회에서는 특허의 중요성이 점점 커지고 있다. 이 점은 풍력발전기 분야에서 역시 예외가 아니다. 따라서 기술 개발 이전에 해당 기술 분야에 대해 특허를 조사하고 특허맵을 구축하는 것이 필요하다. 또한 특허맵의 구축을 통하여 풍력 발전기 분야의 기술 개발 동향 및 경쟁 업체의 기술 개발 현황 등에 대하여 파악이 가능하다. 본 논문에서는 풍력발전기의 레이아웃과 드라이브 트레인, 그리고 요 시스템에 대하여 해당 특허에 대한 조사 및 특허맵에 대하여 이야기 하고자 한다.

  • PDF

Estimation of Remaining Useful Life for Bearing of Wind Turbine based on Classification of Trend (상태지수의 경향성 분류에 기반한 풍력발전기 베어링 잔여수명 추정)

  • Yun-Ho Seo;SangRyul Kim;Pyung-Sik Ma;Jung-Han Woo;Dong-Joon Kim
    • Journal of Wind Energy
    • /
    • v.14 no.3
    • /
    • pp.34-42
    • /
    • 2023
  • The reduction of operation and maintenance (O&M) costs is a critical factor in determining the competitiveness of wind energy. Predictive maintenance based on the estimation of remaining useful life (RUL) is a key technology to reduce logistic costs and increase the availability of wind turbines. Although a mechanical component usually has sudden changes during operation, most RUL estimation methods use the trend of a state index over the whole operation period. Therefore, overestimation of RUL causes confusion in O&M plans and reduces the effect of predictive maintenance. In this paper, two RUL estimation methods (load based and data driven) are proposed for the bearings of a wind turbine with the results of trend classification, which differentiates constant and increasing states of the state index. The proposed estimation method is applied to a bearing degradation test, which shows a conservative estimation of RUL.

Concept and Prelimimary Design of Large Offshore wind turbine system (해상용 대형 풍력 발전 시스템의 개념 설계와 기본 설계에 관한 연구)

  • Jung Ji-Young;Shin Hyung-Ki;Park Kwang-Kun;Choi Woo-Young;Park Ji-Woong;Kim Ho-Geon;Lee Soo-Gab;Smith Robert Rawlinson;Jamieson Peter;Quarton David
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.241-244
    • /
    • 2006
  • Recently wind turbines become large, constructed as farms and going out to offshore. Different design approach from onshore is needed for offshore wind turbine. At this paper concept and preliminary design of an offshore wind turbine of 3MW rated power are performed. The concept design started from modelling of the generator and gearbox. With these modelling the optimum specifications was acquired. Integrated type of drive train is designed with all parts are mounted on the tower top as the offshore maintenance strategy. At the preliminary stage control system, power production algorithm and safety system are designed. Load calculation is also performed. The 3MW offshore wind turbine concept/preliminary design and the process of design are obtained as results.

  • PDF

Neural Network Controller of A Grid-Connected Wind Energy Conversion System for Maximum Power Extraction (계통연계 풍력발전시스템의 최대출력제어를 위한 신경회로망 제어기에 관한 연구)

  • Ro, Kyoung-Soo;Choo, Yeon-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.2
    • /
    • pp.142-149
    • /
    • 2004
  • This paper presents a neural network controller of a grid-connected wind energy conversion system for extracting maximum power from wind and a power controller to transfer the maximum power extracted into a utility grid. It discusses the modeling and simulation of the wind energy conversion system with the controllers, which consists of an induction generator, a transformer, a link of a rectifier, and an inverter. The paper describes tile drive train model, induction generator model and grid-interface model for dynamics analysis. Maximum power extraction is achieved by controlling the pitch angle of the rotor blades by a neural network controller. Pitch control method is mechanically complicated, but the control performance is better than that of the stall regulation. The simulation results performed on MATLAB show the variation of the generator torque, the generator rotor speed, the pitch angle, and real/reactive power injected into the grid, etc. Based on the simulation results, the effectiveness of the proposed controllers is verified.

Power Density Characteristics Analysis and Design of Magnetic Gear according to Speed for Drive Train of 10MW Offshore Wind Turbine (10MW급 해상풍력발전기 드라이브 트레인을 위한 마그네틱 기어의 속도별 설계 및 출력밀도 특성분석)

  • Kim, Chan-Ho;Kim, Yong-Jae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1718-1723
    • /
    • 2015
  • The diameter of the rotor of 2MW wind turbine is being developed by a number of companies with more than 80m, reliability and economic efficiency of the wind power generator has been improved. The need for large-scale wind turbine with excellent economy has been attracting attention because the new orders and the location of the wind turbine market has reached a limit. Technology development for enlargement of wind turbine is possible not only the improvement of energy efficiency but also reduce the construction costs per unit capacity. However, mechanical gearboxes used in wind generators have problems of wear, damage, need for lubrication oil and maintenance. Therefore, we want to configure the gearbox of a large-scale wind turbine using a magnetic gear in order to solve these problems of mechanical gearbox.