• Title/Summary/Keyword: 표정분석

Search Result 393, Processing Time 0.026 seconds

Accuracy Assessment of Parcel Boundary Surveying with a Fixed-wing UAV versus Rotary-wing UAV (고정익 UAV와 회전익 UAV에 의한 농경지 필지경계 측량의 정확도 평가)

  • Sung, Sang Min;Lee, Jae One
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.6
    • /
    • pp.535-544
    • /
    • 2017
  • UAVs (Unmanned Aerial Vehicle) are generally classified into fixed-wing and rotary-wing type, and both have very different flight characteristics each other during photographing. These can greatly effect on the quality of images and their productions. In this paper, the change of the camera rotation angle at the moment of photographing was compared and analyzed by calculating orientation angles of each image taken by both types of payload. Study materials were acquired at an altitude of 130m and 260m with fixed-wing, and at an altitude of 130m with rotary-wing UAV over an agricultural land. In addition, an accuracy comparison of boundary surveying methods between UAV photogrammetry and terrestrial cadastral surveying was conducted in two parcels of the study area. The study results are summarized as follows. The differences at rotation angles of images acquired with between two types of UAVs at the same flight height of 130m were significantly very large. On the other hand, the distance errors of parcel boundary surveying were not significant between them, but almost the same, about within ${\pm}0.075m$ in RMSE (Root Mean Square Error). The accuracy of boundary surveying with a fixed-wing UAV at 260m altitude was quite variable, $0.099{\sim}0.136m$ in RMSE. In addition, the error of area extracted from UAV-orthoimages was less than 0.2% compared with the results of the cadastral survey in the same two parcels used for the boundary surveying, In conclusion, UAV photogrammetry can be highly utilized in the field of cadastral surveying.

Development of a Method for Calculating the Allowable Storage Capacity of Rivers by Using Drone Images (드론 영상을 이용한 하천의 구간별 허용 저수량 산정 방법 개발)

  • Kim, Han-Gyeol;Kim, Jae-In;Yoon, Sung-Joo;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_1
    • /
    • pp.203-211
    • /
    • 2018
  • Dam discharge is carried out for the management of rivers and area around rivers due to rainy season or drought. Dam discharge should be based on an accurate understanding of the flow rate that can be accommodated in the river. Therefore, understanding the allowable storage capacity of river is an important factor in the management of the environment around the river. However, the methods using water level meters and images, which are currently used to determine the allowable flow rate of rivers, show limitations in terms of accuracy and efficiency. In order to solve these problems, this paper proposes a method to automatically calculate the allowable storage capacity of river based on the images taken by drone. In the first step, we create a 3D model of the river by using the drone images. This generation process consists of tiepoint extraction, image orientation, and image matching. In the second step, the allowable storage capacity is calculated by cross section analysis of the river using the generated river 3D model and the road and river layers in the target area. In this step, we determine the maximum water level of the river, extract the cross-sectional profile along the river, and use the 3D model to calculate the allowable storage capacity for the area. To prove our method, we used Bukhan river's data and as a result, the allowable storage volume was automatically extracted. It is expected that the proposed method will be useful for real - time management of rivers and surrounding areas and 3D models using drone.

Analysis of Users' Emotions on Lighting Effect of Artificial Intelligence Devices (인공지능 디바이스의 조명효과에 대한 사용자의 감정 평가 분석)

  • Hyeon, Yuna;Pan, Young-hwan;Yoo, Hoon-Sik
    • Science of Emotion and Sensibility
    • /
    • v.22 no.3
    • /
    • pp.35-46
    • /
    • 2019
  • Artificial intelligence (AI) technology has been evolving to recognize and learn the languages, voice tones, and facial expressions of users so that they can respond to users' emotions in various contexts. Many AI-based services of particular importance in communications with users provide emotional interaction. However, research on nonverbal interaction as a means of expressing emotion in the AI system is still insufficient. We studied the effect of lighting on users' emotional interaction with an AI device, focusing on color and flickering motion. The AI device used in this study expresses emotions with six colors of light (red, yellow, green, blue, purple, and white) and with a three-level flickering effect (high, middle, and low velocity). We studied the responses of 50 men and women in their 20s and 30s to the emotions expressed by the light colors and flickering effects of the AI device. We found that each light color represented an emotion that was largely similar to the user's emotional image shown in a previous color-sensibility study. The rate of flickering of the lights produced changes in emotional arousal and balance. The change in arousal patterns produced similar intensities of all colors. On the other hand, changes in balance patterns were somewhat related to the emotional image in the previous color-sensibility study, but the colors were different. As AI systems and devices are becoming more diverse, our findings are expected to contribute to designing the users emotional with AI devices through lighting.

Estimating the Uncertainty and Validation of Basic Wood Density for Pinus densiflora in Korea (소나무 용적밀도의 적용성 및 불확도 평가)

  • Pyo, Jung-Kee;Son, Yeong-Mo;Lee, Kyeong-Hak;Kim, Rae-Hyun;Kim, Yeong-Hwan;Lee, Young-Jin
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.6
    • /
    • pp.929-933
    • /
    • 2010
  • According to the IPCC guideline (2006), uncertainty assessment is very important in terms of the greenhouse gas inventory. Therefore, the purpose of this study is to estimate the basic wood density (BWD) and its uncertainty for Pinus densiflora in Korea. In this study, Pinus densiflora forests were divided into two ecotypes which were Gangwon and Jungbu regions. A total of 33 representative sampling plots was selected to collect sample trees after considering the tree ages and DBH distributions. The BWD showed statistically no difference between age classes based on IPCC's classification. While, it showed statistically difference(pvalue=0.0017) between eco-types. The BWD and uncertainty was 0.396(g/$cm^3$) and 12.9(%) for Pinus densiflora in Gangwon, while it was 0.470(g/$cm^3$) and 3.8(%) for Pinus densiflora in Jungbu. The values of the BWD uncertainty for Pinus densiflora were more precised than the values given by the IPCC guideline.

Above-and Belowground Biomass and Net Primary Production for Pinus densiflora Stands of Cheongyang and Boryeong Regions in Chungnam (충남 청양, 보령지역 소나무림의 지상부와 지하부 바이오매스 및 순생산량에 관한 연구)

  • Seo, Yeon-Ok;Lee, Young-Jin;Pyo, Jung-Kee;Kim, Rae-Hyun;Son, Yeong-Mo;Lee, Kyeong-Hak
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.6
    • /
    • pp.914-921
    • /
    • 2010
  • This study analyzed the above-and belowground biomass, net primary production, stem density, and biomass expansion factors for Pinus densiflora stands of Cheongyang and Boryeong regions in Chungnam. The total dry weights in Cheongyang and Boryeong regions were 122.36 kg/tree and 137.68 kg/tree while the aboveground biomass for these two regions were 72.23 Mg/ha and 143.27 Mg/ha, respectively. Total(above-and belowground) biomass were 91.77 Mg/ha and 178.98 Mg/ha, respectively. Net primary production of above-and belowground biomass in Cheongyang and Boryeong regions were 8.69 Mg/ha, 10.03 Mg/ha, 16.00 Mg/ha and 18.66 Mg/ha, respectively. Stem density (g/$cm^3$) was 0.457 and 0.421 while the above and total biomass expansion factors were 1.394~1.662 and 1.324~1.639, respectively. These results suggested that stand density and site quality could be influenced on the biomass and net primary production of the two regions. In addition, the results of this study could be very useful to calculate carbon sequestrations by applying stem density values and biomass expansion factors for Pinus densiflora in these two regions.

Facial Feature Detection and Facial Contour Extraction using Snakes (얼굴 요소의 영역 추출 및 Snakes를 이용한 윤곽선 추출)

  • Lee, Kyung-Hee;Byun, Hye-Ran
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.7
    • /
    • pp.731-741
    • /
    • 2000
  • This paper proposes a method to detect a facial region and extract facial features which is crucial for visual recognition of human faces. In this paper, we extract the MER(Minimum Enclosing Rectangle) of a face and facial components using projection analysis on both edge image and binary image. We use an active contour model(snakes) for extraction of the contours of eye, mouth, eyebrow, and face in order to reflect the individual differences of facial shapes and converge quickly. The determination of initial contour is very important for the performance of snakes. Particularly, we detect Minimum Enclosing Rectangle(MER) of facial components and then determine initial contours using general shape of facial components within the boundary of the obtained MER. We obtained experimental results to show that MER extraction of the eye, mouth, and face was performed successfully. But in the case of images with bright eyebrow, MER extraction of eyebrow was performed poorly. We obtained good contour extraction with the individual differences of facial shapes. Particularly, in the eye contour extraction, we combined edges by first order derivative operator and zero crossings by second order derivative operator in designing energy function of snakes, and we achieved good eye contours. For the face contour extraction, we used both edges and grey level intensity of pixels in designing of energy function. Good face contours were extracted as well.

  • PDF

Improvement of Nottingham Grading System for Facial Asymmetry Evaluation (안면비대칭 평가를 위한 Nottingham Grading System의 문제점 개선)

  • Lee, Min-Woo;Jang, Min;Kim, Jina;Shin, Sang-Hoon
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.11 no.2
    • /
    • pp.179-186
    • /
    • 2017
  • Because facial asymmetry is caused by various causes, the cause analysis is important and quantitative index is needed to the evaluation. In this study, we applied the Nottingham Grading System that was used as a quantitative index to evaluate the facial paralysis by tracking the markers through the image processing and calculating the distance between the markers with images obtained by using the webcam, to evaluate facial asymmetry. The existing Nottingham Grading System has a problem of causing a measurement error in the specific case because the left and right are compared by summing the distance change between the feature points of the face part according to the change of the facial expression. We compared the case of the facial asymmetry and case of normal subject by using the existing Nottingham Grading System and the improved Nottingham grading system. In the existing Nottingham Grading System, case of facial asymmetry and case of facial symmetry were 99.0% and 95.0% respectively in the normal range, but the improved Nottingham Grading System showed facial asymmetry case was 74.0% and facial symmetrical case was 93.2%. The results of experiment show that the improved Nottingham Grading System allows detailed evaluation of each site and improved the problem of the Nottingham Grading System for specific cases.

Applicability Evaluation of a Mixed Model for the Analysis of Repeated Inventory Data : A Case Study on Quercus variabilis Stands in Gangwon Region (반복측정자료 분석을 위한 혼합모형의 적용성 검토: 강원지역 굴참나무 임분을 대상으로)

  • Pyo, Jungkee;Lee, Sangtae;Seo, Kyungwon;Lee, Kyungjae
    • Journal of Korean Society of Forest Science
    • /
    • v.104 no.1
    • /
    • pp.111-116
    • /
    • 2015
  • The purpose of this study was to evaluate mixed model of dbh-height relation containing random effect. Data were obtained from a survey site for Quercus variabilis in Gangwon region and remeasured the same site after three years. The mixed model were used to fixed effect in the dbh-height relation for Quercus variabilis, with random effect representing correlation of survey period were obtained. To verify the evaluation of the model for random effect, the akaike information criterion (abbreviated as, AIC) was used to calculate the variance-covariance matrix, and residual of repeated data. The estimated variance-covariance matrix, and residual were -0.0291, 0.1007, respectively. The model with random effect (AIC = -215.5) has low AIC value, comparison with model with fixed effect (AIC = -154.4). It is for this reason that random effect associated with categorical data is used in the data fitting process, the model can be calibrated to fit repeated site by obtaining measurements. Therefore, the results of this study could be useful method for developing model using repeated measurement.

A Study on the Visual Expression of the Characters for the Narrative in Animation - A Focus on Skeleton Character in "Coco(2017)" by Pixar - (장편 애니메이션 내러티브를 위한 캐릭터의 시각적 표현에 관한 연구 -픽사(PIXAR) "코코(2017)"의 해골 캐릭터를 중심으로-)

  • Kim, Soong-Hyun
    • Journal of Digital Convergence
    • /
    • v.17 no.12
    • /
    • pp.451-459
    • /
    • 2019
  • This study is aims to examine how the skeleton character in Pixar's Animation is visualized for the narrative of the film and suggests the direction of attractive character development corresponding to the story. First of all, it was conducted the case studies on the narrative of animation, character design, character's emotion expression, and animations featuring skeleton character. Based on this study, it was derived the visual representation of the skeleton character featuring in and analyzed the role and function in the animation. As a result, the expressions by the skeleton's eyes, eyebrows, mouth, lips, and jaw played the most important role for the emotional expression and lines in , and the major characteristic for human facial expression was reflected in the design of the skeleton character. In addition, the various props were used to provide the detailed informations of the skeleton's character, and it was expressed the movement emphasizing its essential attribute. Finally, the skeleton's symbolic image was strengthened by composing and arranging the skeleton's image through Mise en scene. It is expected that this study will be used as a reference for the animation character related researchers and practitioners in the business and it helps develop attractive characters fir the narrative animation in the future.

A Study on the Accuracy Improvement of Control Point Surveying of Photograph Using Digital Camera (디지털 카메라를 이용한 사진기준점측량의 정확도 향상에 관한 연구)

  • Kim, Kye-Dong;Park, Joung-Hyun;Lee, Young-Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.2
    • /
    • pp.203-211
    • /
    • 2009
  • With supply of the domestic digital camera, the relative importance of the digital camera is coming to be high gradually on aerial photogrammetry, the image of digital camera is more applied in image map or digital topographic map production. But, there are cases that do not have position information or attitude information of each photograph in digital camera results. Therefore, we wish to present additional method to get more accurate photograph control point result. In this study, One is called A method, which is the case of entering positioning information of principal point from topographic map as default values that are need to extract tie point automatically using by 56 pieces of photography that are photographed by DMC to the extent to 5 courses and 35 GCP points. The other is called B-method, which is the case of entering exterior orientation parameters that are processed by block adjustment for A-method using by 4 control points in method-1 as default values. We have analyzed about results per control points arrangement for two cases using MATCH-AT that is photograph control point measurement S/W of Germany INPHO company. As a result of analysis, accuracy of B-method was better than that of A-method, and we could get more accurate results if block adjustments are executed including self calibration. Also, it is more effective in expense side that using self calibration for photograph survey in B-method because can reduce GCP numbers.