DOI QR코드

DOI QR Code

Applicability Evaluation of a Mixed Model for the Analysis of Repeated Inventory Data : A Case Study on Quercus variabilis Stands in Gangwon Region

반복측정자료 분석을 위한 혼합모형의 적용성 검토: 강원지역 굴참나무 임분을 대상으로

  • Pyo, Jungkee (Forest Practice Research Center, Korea Forest Research Institute) ;
  • Lee, Sangtae (Forest Practice Research Center, Korea Forest Research Institute) ;
  • Seo, Kyungwon (Forest Practice Research Center, Korea Forest Research Institute) ;
  • Lee, Kyungjae (Forest Practice Research Center, Korea Forest Research Institute)
  • 표정기 (국립산림과학원 산림생산기술연구소) ;
  • 이상태 (국립산림과학원 산림생산기술연구소) ;
  • 서경원 (국립산림과학원 산림생산기술연구소) ;
  • 이경재 (국립산림과학원 산림생산기술연구소)
  • Received : 2014.07.28
  • Accepted : 2014.11.02
  • Published : 2015.03.31

Abstract

The purpose of this study was to evaluate mixed model of dbh-height relation containing random effect. Data were obtained from a survey site for Quercus variabilis in Gangwon region and remeasured the same site after three years. The mixed model were used to fixed effect in the dbh-height relation for Quercus variabilis, with random effect representing correlation of survey period were obtained. To verify the evaluation of the model for random effect, the akaike information criterion (abbreviated as, AIC) was used to calculate the variance-covariance matrix, and residual of repeated data. The estimated variance-covariance matrix, and residual were -0.0291, 0.1007, respectively. The model with random effect (AIC = -215.5) has low AIC value, comparison with model with fixed effect (AIC = -154.4). It is for this reason that random effect associated with categorical data is used in the data fitting process, the model can be calibrated to fit repeated site by obtaining measurements. Therefore, the results of this study could be useful method for developing model using repeated measurement.

본 연구의 목적은 임의효과(random effect)를 포함하는 혼합모형(mixed model)을 이용하여 흉고직경과 수고의 변화량을 평가하는데 있다. 강원도 굴참나무 임분을 대상으로 흉고직경과 수고를 조사하고 3년 후 동일 임분을 재조사하였다. 혼합모형에서 굴참나무의 흉고직경-수고 관계는 고정효과(fixed effect)이고 초기측정과 반복측정의 흉고직경과 수고 차이를 임의효과로 설정하였다. 임의효과에 따른 모형의 적합도를 검정하기 위하여 아카이케의 정보기준(akaike information criterion, AIC)을 참고하고 반복 측정에 따른 분산-공분산 행렬과 오차항을 산정하였다. 추정된 공분산은 -0.0291이고 오차항은 0.1007을 나타내었다. 분산-공분산 행렬을 이용한 임의효과가 포함된 모형의 AIC(=-215.5)는 고정효과를 고려한 모형의 AIC(=-154.4)에 비해 낮은 수치를 나타내었다. 이러한 결과는 범주형 자료의 임의효과가 모형 개발에 반영되는 결과인 것으로 조사되었다. 그러므로, 본 연구에서 적용된 혼합모형은 반복 측정 자료를 이용한 모형 개발에 활용이 가능한 것으로 판단된다.

Keywords

References

  1. Adame, P., Rio, M.D., and Canellas, I. 2008. A mixed nonlinear height-diameter model for pyrenean oak (Quercus pyrenaica Willd.). Forest Ecology and Management 256: 88-98. https://doi.org/10.1016/j.foreco.2008.04.006
  2. Budhathoki, C.B., Lynch, T.B., and Guldin, J.M. 2008. A Mixed-effects model for the dbh-height relationship of shortleaf pine (Pinus echinata Mill.). Southern Journal of Applied Forestry 32(1): 5-11.
  3. Kim, H. 1999. Review of repeated measures data analysis and PROC MIXED. Journal of the Korean Society of Health Statistics 24(1): 7-15.
  4. Korea Forest Service. 2012. Volume.biomass and stand yield table. Korea Forest Service. pp 181.
  5. Lappi, J. 1997. A longitudinal analysis of height/diameter curves. Forest Science 43(4): 555-570.
  6. Lappi, J. and Bailey, R.L. 1988. A height prediction model with random stand and tree parameter: An alternative to traditional site index methods. Forest Science 34(4): 907-927.
  7. Lee, Y.J., Coble, D.W., Pyo, J.K., Kim, S.H., Lee, W.K., and Choi, J.K. 2009. A Mixed-effects height-diameter model for pinus thunbergii trees in Gangwon province, Korea. Journal of Korean Forest Society 98(2): 178-182.
  8. Liang, J. and Picard, N. 2013. Matrix model of forest dynamics: An overview and outlook. Forest Science 59(3): 359-378. https://doi.org/10.5849/forsci.11-123
  9. Liu, X.Q., Rong, J.Y., and Liu, X.Y. 2008. Best linear unbiased prediction for linear combinations in general mixed linear models. Journal of Multivariate Analysis 99: 1503-1517. https://doi.org/10.1016/j.jmva.2008.01.004
  10. Lynch, T.B., Holly, A.G., and Stevenson, D.J. 2005. A random-parameter height-dbh model for Cherrybark oak. Southern Journal of Applied Forestry 29(1): 22-26.
  11. Mcculloch, C.E., Searle, S.R., and Neuhaus, J.M. 2008. Generalized, Linear, and Mixed Models. John Wiley and Sons, Incorporation. pp 7-10.
  12. Robinson, G.K. 1991. That BLUP is a good thing: The estimation of random effects. Statistical Science 6(1): 15-51. https://doi.org/10.1214/ss/1177011926
  13. SAS Institute, Incorporation. 2004. SAS/STAT 9.1 User's Guide. SAS Institute, Incorporation. Cary. North Carolina.
  14. Searle, S.R. 1982. Matrix algebra useful for statistics. John Wiley and Sons, Incorporation. pp. 200-201.
  15. Sharma, M. and Parton, J. 2007. Height-diameter equations for boreal tree species in Ontario using a mixed-effects modeling approach. Forest Ecology and Management 249: 187-198. https://doi.org/10.1016/j.foreco.2007.05.006
  16. Trincado, G. and Burkhart, H.E. 2006. A generalized approach for modeling and localizing stem profile curves. Forest Science 52: 670-682.
  17. Trincado, G., Vanderschaaf, C.L. and Burkhart, H.E. 2007. Regional mixed-effects height-diameter models for loblolly pine (Pinus taeda L.) plantations. European Journal of Forest Research 126: 253-262. https://doi.org/10.1007/s10342-006-0141-7
  18. Vanderschaaf, C. 2008. Stand level height-diameter mixed effects models: parameters fitted using Loblolly pine but calibrated for sweetgum. Proceeding of the 16th Central Hardwoods Forest Conference. pp. 386-393.
  19. Vargas-larreta, B., Castedo-dorado, F., Alvarez-gonzalez, J.G., Barrio-anta, M. and Cruz-cobos, F. 2009. A generalized height-diameter model with random coefficients for unevenaged stands in El Salto, Durango(Mexico). Forestry 82(4): 445-462. https://doi.org/10.1093/forestry/cpp016
  20. Zhang, Y. and Borders, B.E. 2004. Using a system mixed-effects modeling method to estimates tree compartment biomass for intensively managed loblolly pines-an allometric approach. Forest Ecology and Management 194: 145-157. https://doi.org/10.1016/j.foreco.2004.02.012

Cited by

  1. 임의효과를 이용한 충남지역 소나무림의 바이오매스 모형 개발 vol.106, pp.2, 2015, https://doi.org/10.14578/jkfs.2017.106.2.213