References
- Adame, P., Rio, M.D., and Canellas, I. 2008. A mixed nonlinear height-diameter model for pyrenean oak (Quercus pyrenaica Willd.). Forest Ecology and Management 256: 88-98. https://doi.org/10.1016/j.foreco.2008.04.006
- Budhathoki, C.B., Lynch, T.B., and Guldin, J.M. 2008. A Mixed-effects model for the dbh-height relationship of shortleaf pine (Pinus echinata Mill.). Southern Journal of Applied Forestry 32(1): 5-11.
- Kim, H. 1999. Review of repeated measures data analysis and PROC MIXED. Journal of the Korean Society of Health Statistics 24(1): 7-15.
- Korea Forest Service. 2012. Volume.biomass and stand yield table. Korea Forest Service. pp 181.
- Lappi, J. 1997. A longitudinal analysis of height/diameter curves. Forest Science 43(4): 555-570.
- Lappi, J. and Bailey, R.L. 1988. A height prediction model with random stand and tree parameter: An alternative to traditional site index methods. Forest Science 34(4): 907-927.
- Lee, Y.J., Coble, D.W., Pyo, J.K., Kim, S.H., Lee, W.K., and Choi, J.K. 2009. A Mixed-effects height-diameter model for pinus thunbergii trees in Gangwon province, Korea. Journal of Korean Forest Society 98(2): 178-182.
- Liang, J. and Picard, N. 2013. Matrix model of forest dynamics: An overview and outlook. Forest Science 59(3): 359-378. https://doi.org/10.5849/forsci.11-123
- Liu, X.Q., Rong, J.Y., and Liu, X.Y. 2008. Best linear unbiased prediction for linear combinations in general mixed linear models. Journal of Multivariate Analysis 99: 1503-1517. https://doi.org/10.1016/j.jmva.2008.01.004
- Lynch, T.B., Holly, A.G., and Stevenson, D.J. 2005. A random-parameter height-dbh model for Cherrybark oak. Southern Journal of Applied Forestry 29(1): 22-26.
- Mcculloch, C.E., Searle, S.R., and Neuhaus, J.M. 2008. Generalized, Linear, and Mixed Models. John Wiley and Sons, Incorporation. pp 7-10.
- Robinson, G.K. 1991. That BLUP is a good thing: The estimation of random effects. Statistical Science 6(1): 15-51. https://doi.org/10.1214/ss/1177011926
- SAS Institute, Incorporation. 2004. SAS/STAT 9.1 User's Guide. SAS Institute, Incorporation. Cary. North Carolina.
- Searle, S.R. 1982. Matrix algebra useful for statistics. John Wiley and Sons, Incorporation. pp. 200-201.
- Sharma, M. and Parton, J. 2007. Height-diameter equations for boreal tree species in Ontario using a mixed-effects modeling approach. Forest Ecology and Management 249: 187-198. https://doi.org/10.1016/j.foreco.2007.05.006
- Trincado, G. and Burkhart, H.E. 2006. A generalized approach for modeling and localizing stem profile curves. Forest Science 52: 670-682.
- Trincado, G., Vanderschaaf, C.L. and Burkhart, H.E. 2007. Regional mixed-effects height-diameter models for loblolly pine (Pinus taeda L.) plantations. European Journal of Forest Research 126: 253-262. https://doi.org/10.1007/s10342-006-0141-7
- Vanderschaaf, C. 2008. Stand level height-diameter mixed effects models: parameters fitted using Loblolly pine but calibrated for sweetgum. Proceeding of the 16th Central Hardwoods Forest Conference. pp. 386-393.
- Vargas-larreta, B., Castedo-dorado, F., Alvarez-gonzalez, J.G., Barrio-anta, M. and Cruz-cobos, F. 2009. A generalized height-diameter model with random coefficients for unevenaged stands in El Salto, Durango(Mexico). Forestry 82(4): 445-462. https://doi.org/10.1093/forestry/cpp016
- Zhang, Y. and Borders, B.E. 2004. Using a system mixed-effects modeling method to estimates tree compartment biomass for intensively managed loblolly pines-an allometric approach. Forest Ecology and Management 194: 145-157. https://doi.org/10.1016/j.foreco.2004.02.012
Cited by
- 임의효과를 이용한 충남지역 소나무림의 바이오매스 모형 개발 vol.106, pp.2, 2015, https://doi.org/10.14578/jkfs.2017.106.2.213