This study investigates in-sample and out-of-sample predictive abilities of accruals and accruals components with respect to future cash flows using models developed by Barth et al.(2001). In tests, data collected fromda62 Korean KOSPI and KOSDAQ listed firms for ccr4-2007 are used. Results of in-sample prediction tests are similar with those of Barth et al.(2001). Their accrual components model is better than other three models(NI only model, CF only model and NI-total accruals model) in future cash flows predictive ability. That is, in the case of in-sample prediction, accrual components excluding amortization have additional information contents for future cash flows. But in out-of-sample tests, the results are different. The model including operational cash flows(CF only model) shows best out-of-sample predictive ability with respect to future cash flows among above four prediction models. The accrual components model of Barth et al.(2001) has worst out-of-sample predictive ability. The results are robust to sensitivity analyses. In conclusion, we can't find the evidence that accruals and accrual components have predictive ability with respect to future cash flows in out-of-sample prediction tests. This results are consistent with results of Lev et al.(2005), and inconsistent with the belief of accounting standards formulating organizations such as FASB and KASB.
본 논문은 순이익의 시계열 속성을 조사하고, 순이익의 시계열이 랜덤워크 모형과 일치하는지를 단위근 검증방식을 사용하여 조사하며, 시계열 속성에 근거하여 도출된 예측모형과 흔히 사용되어 온 랜덤워크 모형의 예측능력을 비교하여 선행연구에서 사용되고 있는 랜덤워크 모형에 실증적 타당성을 제시하는 것을 주목적으로 하고 있다. 본 연구는 한국신용평가주식회사의 데이터 베이스에 1980년부터 1996년까지 17년간 자료가 연속적으로 포함되어 있는 금융기업을 제외한 모든 기업(272개)을 표본으로 사용하고 있다. 표본기업의 순이익 시계열에 가장 적합한 과정은 랜덤워크나 AR(1) 또는 AR(2) 모형이다. 또한 본 논문은 대부분의 기업에 때해 순이익이 랜덤워크 과정을 따른다는 가설을 기각할 수 없음을 보였다. 이들 상이한 모형의 표본외 예측력(out-of-sample predictive ability)을 비교한 결과 상수항을 포함한 랜덤워크 모형이 가장 작은 평균 절대 예측오차(mean absolute forecast error)를 갖는 것으로 나타나고 있다. 본 연구는 기존의 연구가 순이익 시계열의 불안정성(nonstationarity) 문제를 무시하거나 명시적으로 다루고 있지 않은 것과는 달리 단위근 검증(unit root test)을 통해 연간 순이익이 대체로 불안정하다는 것을 보였으며, 또한 상이한 모형의 표본외 예측능력을 비교한 결과 선행연구에서 사용하여 온 랜덤워크 모형의 우월성에 대한 실증적 증거를 제공하였다는 데 의의가 있다.
The outlook for Korea's consumer price inflation rate has a profound impact not only on the Bank of Korea's operation of the inflation target system but also on the overall economy, including the bond market and private consumption and investment. This study presents the prediction results of consumer price inflation in Korea for the next three years. To this end, first, model selection is performed based on the out-of-sample predictive power of autoregressive distributed lag (ADL) models, AR models, small-scale vector autoregressive (VAR) models, and large-scale VAR models. Since there are many potential predictors of inflation, a Bayesian variable selection technique was introduced for 12 macro variables, and a precise tuning process was performed to improve predictive power. In the case of the VAR model, the Minnesota prior distribution was applied to solve the dimensional curse problem. Looking at the results of long-term and short-term out-of-sample predictions for the last five years, the ADL model was generally superior to other competing models in both point and distribution prediction. As a result of forecasting through the combination of predictions from the above models, the inflation rate is expected to maintain the current level of around 2% until the second half of 2022, and is expected to drop to around 1% from the first half of 2023.
This paper introduces the modified VaR which takes into account the asymmetry and fat-tails of financial asset distribution, and then compares its out-of-sample forecast performance with traditional VaR model such as historical simulation model and Riskmetrics. The empirical tests using stock indices of 6 countries showed that the modified VaR has the best forecast accuracy. At the test of independence, Riskmetrics and GARCH model showed best performances, but the independence was not rejected for the modified VaR. The Monte Carlo simulation using skew t distribution again proved the best forecast performance of the modified VaR. One of many advantages of the modified VaR is that it is appropriate for measuring VaR of the portfolio, because it can reflect not only the linear relationship but also the nonlinear relationship between individual assets of the portfolio through coskewness and cokurtosis. The empirical analysis about decomposing VaR of the portfolio of 6 stock indices confirmed that the component VaR is very useful for the re-allocation of component assets to achieve higher Sharpe ratio and the active risk management.
If the frequency of a particular class is excessively higher than the frequency of other classes in the classification problem, data imbalance problems occur, which make machine learning distorted. Corporate bankruptcy prediction often suffers from data imbalance problems since the ratio of insolvent companies is generally very low, whereas the ratio of solvent companies is very high. To mitigate these problems, it is required to apply a proper sampling technique. Until now, oversampling techniques which adjust the class distribution of a data set by sampling minor class with replacement have popularly been used. However, they are a risk of overfitting. Under this background, this study proposes ROSE(Random Over Sampling Examples) technique which is proposed by Menardi and Torelli in 2014 for the effective corporate bankruptcy prediction. The ROSE technique creates new learning samples by synthesizing the samples for learning, so it leads to better prediction accuracy of the classifiers while avoiding the risk of overfitting. Specifically, our study proposes to combine the ROSE method with SVM(support vector machine), which is known as the best binary classifier. We applied the proposed method to a real-world bankruptcy prediction case of a Korean major bank, and compared its performance with other sampling techniques. Experimental results showed that ROSE contributed to the improvement of the prediction accuracy of SVM in bankruptcy prediction compared to other techniques, with statistical significance. These results shed a light on the fact that ROSE can be a good alternative for resolving data imbalance problems of the prediction problems in social science area other than bankruptcy prediction.
'80년대 중반 들어 주가지수 예측모형으로 애용되던 시계열 예측모형에 대한 근본적인 의문이 제기되었다. 이것은 기존 예측모형이 선형 데이터 생성과정을 기본가정으로 채택하고 있지만 진정한 데이터 생성과정은 비선형일 수도 있다는 점에서 출발한다. 주가지수의 변동을 유발하는 경제의 기본구조가 비선형임에도 불구하고 이를 선형모형으로 접근한다면 주가의 움직임을 제대로 설명할 수 없을 뿐만 아니라 이러한 설정오류는 모형의 신뢰성을 크게 손상시킨다. 이와 같은 점에 착안하여 본 연구는 업종별 주가지수의 비선형 검정을 통해 주가가 어떠한 형태의 경제구조에서 생성되었는지 여러 가지 방법으로 정정한다. 10개 업종지수의 검정결과 보험업을 제외한 대부분의 업종지수가 카오스 끌개를 보유하고 있다는 증거가 포착되었다. 표본외 예측을 위해서 국지적 가중회귀법을 채택하였는데 예측결과 모형에 따라 $6{\sim}7$개 업종에서 통상최소자승법보다 예측력 우위를 보였다.
경기변동(景氣變動)에 대한 중요한 판단자료인 산업생산지수(産業生産指數)는 음력에 따르는 구정, 추석 등의 기간 및 시점변동으로 계절적 요인이 불규칙하게 나타나게 되고, 이로 인하여 지수(指數)의 분석에 혼란이 야기되고 있다. 산업생산지수(産業生産指數)의 계절변동(季節變動)은 일차적으로 근로일수(勤勞日數)에 그 원인이 있는 것으로 판단된다. 본고(本稿)에서는 통상의 계절조정방법 대신에 근로일수를 고려하여 1일당 생산을 기준으로 산업생산을 분석하였다. 근로일수(勤勞日數)는 확정적(確定的)(deterministic)인 성격을 가지고 있어 계절성(季節性)의 변동에 대한 예측(豫測)이 가능할 뿐 아니라, 1일당 생산을 고려할 경우 각 관측치의 시간적 길이를 동일하게 함으로써 생산과 재고의 관계를 설정하는 것이 용이해진다. 생산(生産)과 재고변화(在庫變化)만을 이용한 간단한 오차수정모형(error correction model)을 설정하여 생산의 표본외구간(標本外區間) 예측(豫測)(out of sample forecasting)을 수행한 결과, 근로일수(勤勞日數)로 조정하였을 경우 예측력이 현저히 개선됨을 확인할 수 있었다.
The influence of temperature on electricity demand is increasing due to extreme weather and climate change, and the climate impacts involves nonlinearity, asymmetry and complexity. Considering changes in government energy policy and the development of the fourth industrial revolution, it is important to assess the climate effect more accurately for stable management of electricity supply and demand. This study aims to analyze the effect of temperature change on electricity demand using the partial linear model. The main results obtained using the time-unit high frequency data for meteorological variables and electricity consumption are as follows. Estimation results show that the relationship between temperature change and electricity demand involves complexity, nonlinearity and asymmetry, which reflects the nonlinear effect of extreme weather. The prediction accuracy of in-sample and out-of-sample electricity forecasting using the partial linear model evidences better predictive accuracy than the conventional model based on the heating and cooling degree days. Diebold-Mariano test confirms significance of the predictive accuracy of the partial linear model.
This study applied the statistically significant factors to the short-run model in the existing nonlinear long-run equilibrium relation analysis for the forecasting of maritime economy using the mixed cycle model. The most common univariate AR(1) model and out-of-sample forecasting are compared with the root mean squared forecasting error from the mixed-frequency model, and the prediction power of the mixed-frequency approach is confirmed to be better than the AR(1) model. The empirical results from the analysis suggest that the new approach of high-level mixed frequency model is a useful for forecasting marine industry. It is consistent that the inclusion of more information, such as higher frequency, in the analysis of long-run equilibrium framework is likely to improve the forecasting power of short-run models in multivariate time series analysis.
Volatility forecasting in financial markets is an important issue because it is directly related to the profit of return. The volatility is generally modeled as time-varying conditional heteroskedasticity. A generalized autoregressive conditional heteroskedastic (GARCH) model is often used for modeling; however, it is not suitable to reflect structural changes (such as a financial crisis or debt crisis) into the volatility. As a remedy, we introduce the Markov regime switching GARCH (MRS-GARCH) model. For the empirical example, we analyze and forecast the volatility of the daily Korea Composite Stock Price Index (KOSPI) data from January 4, 2000 to October 30, 2014. The result shows that the regime of low volatility persists with a leverage effect. We also observe that the performance of MRS-GARCH is superior to other GARCH models for in-sample fitting; in addition, it is also superior to other models for long-term forecasting in out-of-sample fitting. The MRS-GARCH model can be a good alternative to GARCH-type models because it can reflect financial market structural changes into modeling and volatility forecasting.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.