• Title/Summary/Keyword: 표면 접착강도

Search Result 288, Processing Time 0.023 seconds

Test on the strengthening effects and behavior of Roll beam with Stiffened carbon-plate (롤빔에 카본플레이트를 보강한 강재의 일체적거동 및 강성보강효과)

  • Sung, IkHyun
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.4
    • /
    • pp.392-399
    • /
    • 2013
  • The use of advanced composite materials in strengthening and repair of existing structures is increasing rapidly. One specific area in which the technique has been introduced lately is the strengthening of metallic structures with bonded carbon-fibre laminates. In this paper, the behaviors of composite steel-CFRP members is studied experimentally. A new type of test specimen has been developed for this purpose. By examining different combination of CFRP-laminates and adhesives, different types of fracture mode could be examined. The tested composite elements also displayed different behavior and a large difference in strength and ductility could be observed.

Synthesis and Properties of Self-photocuring Polyurethane Acrylate Oligomer for Color Pre-coated metal (선도장 컬러강판용 도료에 적용하기 위한 자가 광경화형 폴리우레탄 아크릴레이트 올리고머 합성 및 물성)

  • Park, So-Young;Cheon, Jungmi;Jeong, Boo Young;Lee, Do Hyeok;Chun, Jae Hwan
    • Journal of Adhesion and Interface
    • /
    • v.21 no.1
    • /
    • pp.14-19
    • /
    • 2020
  • In this study, we synthesized a self-photocuring intermediate(SPI) by Michael addition reaction and synthesized polyurethane acrylate oligomer. Analysis and physical properties of the synthesized SPI and polyurethane acrylate oligomer were confirmed by FT-IR, NMR and UTM. As the content of the SPI increased, the tensile strength increased and the elongation decreased. In addition, since the film was hydrophobic, the surface energy tended to decrease. When the content of the SPI was 40 wt%, adhesion, processability, and pencil hardness were excellent, and solvent resistance was excellent overall.

An Experimental Study on the Structural Bechavior of Two-layered Reinforced Concrete Slabs in Bridges (교량에서 2층 분리타설한 철근콘크리트 슬래브의 구조거동에 관한 실험연구)

  • 오병환;이형준;이명규;한승환
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.3
    • /
    • pp.162-172
    • /
    • 1994
  • The flexural and horizontal shear behavior of overlaid concrete slabs with polymer interface is investigated in the present study. An experimental program was set up and several series of overlaid concrete slabs have been tested to study the effect of different surface preparations and dowel bars between old slab and overlay under service and ultimate loads. 'The cracking and ulti mate load behavior for various cases including acryl emulsion treatment and doweled joints has been studied. The present study indica.tes that the overlaid concrete slabs behave integrally with existing bottom slabs up to ultimate range for rough and doweled joints with polymer interface. The pres ent study provides a firm base for the realistic design of two-layered RC slabs in bridges.

EFFECT OF CUTTING INSTRUMENTS ON THE DENTIN BOND STRENGTH OF A SELF-ETCH ADHESIVE (상아질 삭제기구가 자가부식 접착제의 결합강도에 미치는 효과)

  • Lee, Young-Gon;Moon, So-Ra;Cho, Young-Gon
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.1
    • /
    • pp.13-19
    • /
    • 2010
  • The purpose of this study was to compare the microshear bond strength of a self-etching primer adhesive to dentin prepared with different diamond points, carbide burs and SiC papers, and also to determine which SiC paper yield similar strength to that of dentinal surface prepared with points or burs. Fifty-six human molar were sectioned to expose the occlusal dentinal surfaces of crowns and slabs of 1.2 mm thick were made. Dentinal surfaces were removed with three diamond points, two carbide burs, and three SiC papers. They were divided into one of eight equal groups (n = 7); Group 1: standard diamond point(TF-12), Group 2: fine diamond point (TF-12F), Group 3: extrafine diamond point (TF-12EF), Group 4: plain-cut carbide bur (no. 245), Group 5: cross-cut carbide bur (no. 557), Group 6 : P 120-grade SiC paper, Group 7: P 220-grade SiC paper, Group 8: P 800-grade SiC paper. Clearfil SE Bond was applied on dentinal surface and Clearfil AP-X was placed on dentinal surface using Tygon tubes. After the bonded specimens were subjected to uSBS testing, the mean uSBS (n = 20 for each group) was statistically compared using one-way ANOV A and Tukey HSD test. In conclusion, the use of extrafine diamond point is recommended for improved bonding of Clearfil SE Bond to dentin. Also the use of P 220-grade SiC paper in vitro will be yield the results closer to dentinal surface prepared with fine diamond point or carbide burs in vivo.

Effect of delayed time, surface treatment, and repair material on shear bond strength of repaired bis-acryl composite resin (수리된 비스 아크릴 복합 레진의 전단결합강도에 대한 지연시간, 표면처리, 수리 재료의 영향)

  • Park, Ji-su;Lee, Jae-In
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.34 no.2
    • /
    • pp.89-96
    • /
    • 2018
  • Purpose: The aim of this study was to evaluate the effect of delayed time, surface treatment, and repair materials on repair of bis-acryl composite resin through comparison of shear bond strength and to evaluate the utility of bis-acryl composite resin repair using polymethyl methacrylate resin. Materials and Methods: A total of 90 bis-acryl composite resin specimens were fabricated and classified into 9 test groups, each of 10 pieces according to delayed time, surface treatment and repair material. The shear bond strength of each specimen was measured using a universal testing machine immediately after fabrication and analyzed using a statistical analysis program (IBM SPSS statistics 20). After the shear bond strength measurement, the fracture surface of the specimen was observed. Results: The highest shear bond strength ($17.54{\pm}3.14MPa$) was observed in the experimental group bonded immediately with a light-curing flowable composite resin using a bonding agent. Conclusion: When repairing bis-acryl composite resin, it is necessary to consider whether to remake according to the delayed time. For effective repair, it is desirable to consider appropriate materials and surface treatment methods according to the site or purpose of use.

Evaluation of Wettability and Interfacial Property of Glass Fiber Reinforced Composite with Different Glass Fiber Conditions via Capillary Effect (Capillary 특성을 활용한 섬유 조건에 따른 유리섬유강화 복합재료의 함침성 및 계면강도 평가)

  • Kim, Jong-Hyun;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.34 no.5
    • /
    • pp.305-310
    • /
    • 2021
  • Mechanical properties of fiber reinforced composites were affected to fiber volume fractions (FVF) and interfacial property by sizing agent conditions. An optimum interface can relieve stress concentration by transferring the mechanical stress from the matrix resin to the reinforcements effectively, and thus can result in the performance of the composites. The interfacial properties and wettability between the epoxy resin and glass fiber (GF) were evaluated for different sizing agent conditions and FVFs. The surface energies of epoxy resin and different sizing agent treated GFs were calculated using dynamic and static contact angle measurements. The work of adhesion, Wa was calculated by using surface energies of epoxy matrix and GFs. The wettability was evaluated via the GF tow capillary test. The interfacial shear strength (IFSS) was evaluated by microdroplet pull-out test. Finally, the optimized GFRP manufacturing conditions could be obtained by using wettability and interfacial property.

Comparison of shear bond strength according to various surface treatment methods of zirconia and resin cement types (지르코니아의 다양한 표면처리 방법과 레진시멘트 종류에 따른 전단결합강도 비교)

  • Bae, Ji-Hyeon;Bae, Gang-Ho;Park, Taeseok;Huh, Jung-Bo;Choi, Jae-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.2
    • /
    • pp.153-163
    • /
    • 2021
  • Purpose: The aim of this study was to evaluate the effects of four surface treatment methods to improve zirconia roughness and three types of resin cement on the shear bond strength (SBS). Materials and methods: A total of 120 zirconia blocks were randomly divided into four surface treatments: non-treatment (Control), airborne-particle abrasion (APA) with 50 ㎛ Al2O3 (APA50), APA with 125 ㎛ Al2O3 (APA125), and ZrO2 slurry (ZA). Three resin cements (Panavia F 2.0, Superbond C&B, and Variolink N) were applied to the surface-treated zirconia specimens. All specimens were subjected to SBS testing using a universal testing machine. The surface of the representative specimens of each group was observed by scanning electron microscope (SEM). SBS data were analyzed with oneway ANOVA, two-way ANOVA test and post-hoc Tukey HSD Test (α=.05). Results: In the surface treatment method, APA125, APA50, ZA, and Control showed high shear bond strength in order, but there was no significant difference between APA125 and APA50 (P>.05). Also, ZA showed significantly higher shear bond strength than Control (P<.05). In the resin cement type, Panavia F 2.0, Superbond C&B, and Variolink N showed significantly higher shear bond strength in order (P<.05). In SEM images, the zirconia surfaces of the APA50 and APA125 showed quite rough and irregular shapes, and the zirconia surface of the ZA was observed small irregular porosity and rough surfaces. Conclusion: APA and ZrO2 slurry were enhanced the surface roughness of zirconia, and Panavia F 2.0 containing MDP showed the highest shear bond strength with zirconia.

THE BONDING DURABILITY OF TOTAL ETCHING ADHESIVES ON DENTIN (산부식형 상아질 접착제의 접착 내구성에 관한 연구)

  • Jung, Mi-Ra;Choi, Gi-Woon;Park, Sang-Hyuk;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.4
    • /
    • pp.365-376
    • /
    • 2007
  • The purpose of this study was to evaluate the effect of different etching times on microtensile bond strength (${\mu}TBS$) to dentin both initial and after thermocycling with 3 different types of total-etching adhesives. Fifty four teeth were divided into 18 groups by etching times (5, 15, 25 sec), adhesives types (Scotchbond Multipurpose (SM), Single Bond (SB), One-Step (OS)) and number of thermocycling (0, 2,000 cycles). Flat dentin surfaces were prepared on mid-coronal dentin of extracted third molars. After exposed fresh dentin surfaces were polished with 600-grit SiC papers, each specimen was acid-etched with 35% phosphoric acid (5, 15, 25 sec) and bonded with 3 different types of total etching adhesives respectively. Then, hybrid composite Z-250 was built up. Half of them were not thermocycled (control group) and the ethers were subjected to 2,000 thermocycle (experimental group). They were sectioned occluso-gingivally into $1.0\;{\times}\;1.0\;mm^2$ composite-dentin beams and tested with universal testing machine at a crosshead speed of 1.0 mm/min. Within limited data of this study, the results were as follows 1. There was no statistically significant difference in ${\mu}TBS$ between the thermocycled and non-thermocycled groups, except for both SM and SB etched for 25 sec. 2. In thermocycled SM and SB groups, bond strength decreased by extended etching time. In total etching systems, adhesive durability for dentin could be affected by type of solvents in adhesive and etching time. Especially, extended etching time may cause deteriorate effects on bond strength when ethanol-based adhesive was used.

A STDUY ON THE SURFACE MORPHOLOGY AND BOND STRENGTH OF DENTURE BASE RESIN TO COBALT-CHROMIUM ALLOY AFTER VARYING MODES OF SURFACE TREATMENT (COBALT-CHROMIUM 합금의 표면처리방법에 따른 레진 의치상의 접착강도 및 표면상태에 대한 연구)

  • Vang, Mong-Sook;Park, Young-Jon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.1
    • /
    • pp.78-94
    • /
    • 1997
  • The purpose of this experiment was to determine the effects of various treatments on denture base resin to metal bond for cobalt-chromium alloy. The metal surface was treated as follows. Group 1 : Sandblasted with $50{\mu}m$ aluminum oxide. Group 2 : Sandblasted with $250{\mu}m$ aluminum oxide. Group 3 : Sandblasted with $250{\mu}m$ aluminum oxide and followed by silicoating. Group 4 : Electrochemically etched. Group 5 : treated with oxidizing solution. Group 6 : Beaded with $200{\mu}m$ retention structure and followed by silicoating. All specimens were applied with 4-META resin and were thermocycled 1000 times at temperature of $5^{\circ}C$ to $55^{\circ}C$. The effects of various surface treatments on the bond strength between 4-META resin and metal interface were measured by using the universal testing machine. All specimens were observed with SEM. The results were as follows 1. The bond strength of 4-META resin were significantly higher to Co-Cr alloy. 2. The bond strength decreased in the following orders : group 6, group 3, groups 1 and 2, group 4, group 5 and there was no statistically significant difference in bond strength among groups 1 and 2.(p>0.05) 3. The bond strength of cobalt-chromium alloy to 4-META resin were not significantly different.(p>0.05) 4. The treated surface of groups 1, 2 and 3 has more fine undercut than that of groups 4 and 5 with SEM. 5. Stable adhesion can be achieved when mechanically roughened metal surface by sandblasting than treating in an electrochemical etching and an oxidizing solution with potassium manganate.

  • PDF

A Study of Synthesis and Property of $CaCO_3$/Organic Core-Shell Particle (탄산칼슘 /유기계 Core-Shell 입자의 제조와 물성에 관한 연구)

  • Seul, Soo-Duk
    • Polymer(Korea)
    • /
    • v.34 no.1
    • /
    • pp.38-44
    • /
    • 2010
  • Core-shell particles of inorganic/organic pair were synthesized from $CaCO_3$ absorbed sodium dodecyl benzene sulfonate(SDBS) surfactant. Shell components were synthesized by sequential emulsion polymerization. Various monomers were used as shell components such as methyl methacrylate(MMA), ethyl acrylate(EA), butyl acrylate(BA), and styrene(St). Ammonium persulfate(APS) was used as an initiator and 2-ethylhexyl acylate(2-EHA) was used as a functional monomer, In the $CaCO_3$/organic core-shell particle polymerization, $CaCO_3$ absorbed surfactant SDBS of 0.5 wt% was prepared first and then core $CaCO_3$ was encapsulated by emulsion polymerization. 0.1 wt% of APS was added sequentially to minimize the formation of new monomer particle during shell polymerization. The structure of inorganic/organic core-shell particles were characterized by measuring the decomposition degree of $CaCO_3$ using HCl solution, thermogravimetric analyzer, scanning electron microscope, and transmission electron microscope.