• 제목/요약/키워드: 표면적

검색결과 15,226건 처리시간 0.046초

A Study on Greenspace Planning Strategies for Thermal Comfort and Energy Savings (열쾌적성과 에너지절약을 위한 녹지계획 전략 연구)

  • Jo, Hyun-Kil;Ahn, Tae-Won
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • 제38권3호
    • /
    • pp.23-32
    • /
    • 2010
  • The purpose of this study is to quantify human energy budgets for different structures of outdoor spatial surfaces affecting thermal comfort, to analyze the impacts of tree shading on building energy savings, and to suggest desirable strategies of urban greenspace planning concerned. Concrete paving and grass spaces without tree shading and compacted-sand spaces with tree shading were selected to reflect archetypal compositional types for outdoor spatial materials. The study then estimated human energy budgets in static activity for the 3 space types. Major determinants of energy budgets were the presence of shading and also the albedo and temperature of base surfaces. The energy budgets for concrete paving and grass spaces without tree shading were $284\;W/m^2$ and $226\;W/m^2$, respectively, and these space types were considerably poor in thermal comfort. Therefore, it is desirable to construct outdoor resting spaces with evapotranspirational shade trees and natural materials for the base plane. Building energy savings from tree shading for the case of Daegu in the southern region were quantified using computer modeling programs and compared with a previous study for Chuncheon in the middle region. Shade trees planted to the west of a building were most effective for annual savings of heating and cooling energy. Plantings of shade trees in the south should be avoided, because they increased heating energy use with cooling energy savings low in both climate regions. A large shade tree in the west and east saved cooling energy by 1~2% across building types and regions. Based on previous studies and these results, some strategies including indicators for urban greenspace planning were suggested to improve thermal comfort of outdoor spaces and to save energy use in indoor spaces. These included thermal comfort in construction materials for outdoor spaces, building energy savings through shading, evapotranspiration and windspeed mitigation by greenspaces, and greenspace areas and volume for air-temperature reductions. In addition, this study explored the application of the strategies to greenspace-related regulations to ensure their effectiveness.

ATM Cell Encipherment Method using Rijndael Algorithm in Physical Layer (Rijndael 알고리즘을 이용한 물리 계층 ATM 셀 보안 기법)

  • Im Sung-Yeal;Chung Ki-Dong
    • The KIPS Transactions:PartC
    • /
    • 제13C권1호
    • /
    • pp.83-94
    • /
    • 2006
  • This paper describes ATM cell encipherment method using Rijndael Algorithm adopted as an AES(Advanced Encryption Standard) by NIST in 2001. ISO 9160 describes the requirement of physical layer data processing in encryption/decryption. For the description of ATM cell encipherment method, we implemented ATM data encipherment equipment which satisfies the requirements of ISO 9160, and verified the encipherment/decipherment processing at ATM STM-1 rate(155.52Mbps). The DES algorithm can process data in the block size of 64 bits and its key length is 64 bits, but the Rijndael algorithm can process data in the block size of 128 bits and the key length of 128, 192, or 256 bits selectively. So it is more flexible in high bit rate data processing and stronger in encription strength than DES. For tile real time encryption of high bit rate data stream. Rijndael algorithm was implemented in FPGA in this experiment. The boundary of serial UNI cell was detected by the CRC method, and in the case of user data cell the payload of 48 octets (384 bits) is converted in parallel and transferred to 3 Rijndael encipherment module in the block size of 128 bits individually. After completion of encryption, the header stored in buffer is attached to the enciphered payload and retransmitted in the format of cell. At the receiving end, the boundary of ceil is detected by the CRC method and the payload type is decided. n the payload type is the user data cell, the payload of the cell is transferred to the 3-Rijndael decryption module in the block sire of 128 bits for decryption of data. And in the case of maintenance cell, the payload is extracted without decryption processing.

Selection and Mechanism of Anti-Obesity Agents from Natural Products Based on Anti-Angiogenesis (신생혈관형성억제작용을 기반으로 한 항비만제제의 선별 및 작용기전)

  • Shin, Jin-Hyuk;Lee, Jin-Hee;Kang, Kyeong-Wan;Hwang, Jae-Ho;Han, Kyeong-Ho;Shin, Tai-Sun;Kim, Min-Yong;Kim, Jong-Deog
    • KSBB Journal
    • /
    • 제24권2호
    • /
    • pp.122-130
    • /
    • 2009
  • Anti-angiogenic mechanism was examined for anti-obesity agents with the extract of P.radix, P.semen, S.hebra and C.furctus through anti-cell adhesion effect and western blot. Cell adhesion molecules, VCAM-1 was supressed with the order of P.radix (0.2 ppm, 125%) > P.semen (0.5 ppm, 100%) > S.hebra (5.0 ppm, 114%) > C. furctus (5.0 ppm, 111.8%), ICAM-1 was inhibited by P.radix (0.25 ppm, 130%) > P.semen (0.5 ppm, 100%) > S.hebra (5.0 ppm, 138%) > C. furctus (5.0 ppm, 66.7%), E-Selectin was also supressed P.radix (0.25 ppm, 100%) > P.semen (1.0 ppm, 128%) > S.hebra (5.0 ppm, 120%) > C. furctus (5.0 ppm, 100.7%). And signal molecules, VE-cadherin was supressed by P.radix and S.hebra, ${\beta}$-catenin was inhibited by P.radix, and Akt was supressed all these 4 kinds of natural products. These P.radix, P.semen, S.hebra and C.furctus were showed the possibility of anti-obesity agents based on anti-angiogenesis.

The Effect of Rootzone Mix and Compaction on Nitrogen Leaching in Kentucky bluegrass (토양의 종류와 답압이 켄터키블루그래스 토양층에서 질소용탈에 미치는 영향)

  • Lee, Sang-Kook;Frank, Kevin W.;Crum, James R.
    • Asian Journal of Turfgrass Science
    • /
    • 제24권1호
    • /
    • pp.45-49
    • /
    • 2010
  • Research on nitrate-nitrogen ($NO_3-N$) leaching in turfgrass indicates that in most cases leaching poses minimal risk to the environment. Although there have been many studies investigating $NO_3-N$ leaching, there has been little research to investigate the effect of compaction level and rootzone mix on nitrogen (N) leaching. The research objective is to determine the effect of compaction level and rootzone mix on nitrogen leaching. The four rootzone mixes are 76.0:24.0, 80.8:19.2, 87.0:13.0 and 93.7:6.3 % (sand:soil). The four levels of compaction energies are 1.6, 3.0, 6.1, and 9.1 J $cm^{-2}$. Nitrogen was applied using urea at a rate of 147 kg $ha^{-1}$ split among three applications. Rootzone was packed into a polyvinylchloride pipe with a perforated bottom to facilitate drainage. Rootzone depth was 30 cm over a 5 cm gravel layer. Each column was sodded with Poa pratensis L. Hoagland solution designed for coolseason grasses, minus N, was used to ensure adequate nutrition in the rootzone. Turf grass quality and clipping yield were recorded from each tube at two-week intervals. The clippings were oven-dried at a temperature of $67^{\circ}C$ for 24 h and weighed. At the end of the study, root dry weight was determined by washing and oven-drying samples at $67^{\circ}C$ for 24 h. Leachate solution was collected weekly for analysis. More than 6.1 J $cm^{-2}$ of compaction energy increased possibilities of surface runoff. The compaction energy between 3.0 and 6.1 J $cm^{-2}$ produced more clipping dry weight and less N leaching than 9.1 J $cm^{-2}$.

Analysis of Relative Output Factors for Cyberknife: Comparison of Son Chambers, Diode Detector and Films (사이버나이프 출력인자 분석: 전리함, 다이오드 검출기 및 필름)

  • Jang Ji-Sun;Shin Dong-Oh;Choi Byung-Ock;Lee Tae-Kyu;Choi Ihl-Bohng;Kim Moon-Chan;Kwon Soo-Il;Kang Young-Nam
    • Progress in Medical Physics
    • /
    • 제17권1호
    • /
    • pp.47-53
    • /
    • 2006
  • The accuracy of the dosimetry in the Cyberknife system is accomplishing important role from all processes of the stereotactic radiosurgery. In this study, we estimated relative output factors for Cyberknife. All measurements were peformed by six different detectors: diode detector, X-Omat V film, Gafchromic EBT film, 0.015 cc, 0.125 cc and 0.6 cc ionization chamber The diode detector and three ionization chambers peformed using water phantom at 80 cm SSD and 1.5 cm depth. When the film measurements were peformed, the water phantom was replaced with a solidwater phantom. Each collimator normalized with respect to the output factor of the largest collimator (60 mm). For the collimators over than 30 mm, the output factors from the different detectors showed a good agreement within 0.5% except 0.6 cc ion chamber For the collimators less than 15 mm, there were substantial differences In the output factors among different detectors. That is, the value of output factor for the 5 mm collimator of a diode and Gafchromic film was each $0.656{\pm}0.009$ and $0.777{\pm}0.013$. In the ion chamber and diode detector, those difference were due to the presence of large dose gradients and lack of electronic equilibrium in narrow megavoltage x-ray beams Therefore, the Gafchromic EBT film were considered more accurate than the others detectors.

  • PDF

Quality properties of fermented mugworts and the rapid pattern analysis of their volatile flavor components via surface acoustic wave (SAW) based electronic nose sensor in the GC system (발효 인진쑥과 약쑥의 이화학적 품질특성 및 GC와 SAW센서기반 electronic nose에 의한 향기패턴의 신속분석)

  • Song, Hyo-Nam
    • Food Science and Preservation
    • /
    • 제20권4호
    • /
    • pp.554-563
    • /
    • 2013
  • The changes in quality properties and nutritional components for two mugworts, namely, Artemisia capillaris Thumberg Artemisiae asiaticae Nakai fermented by Bacillus strains were characterized followed by rapid pattern analysis of volatile flavor compounds through the SAW-based electronic nose sensor in the GC system. After fermentation, the pH has remarkably decreased from 6.0~6.4 to 4.6~5.1 and there has been a slight change in the total soluble solids. The L (lightness) and b (yellowness) values in the Hunter's color system significantly decreased, whilst the a (redness) value increased via fermentation. The HPLC analysis demonstrated that the total amino acids increased in quantity and the essential amino acids were higher in the A. asiaticae Nakai than in the A. capillaris Thumberg, specially with high contents of glutamic and aspartic acid. After fermentation, the monounsaturated fatty acid increased in the A. asiaticae Nakai and the polyunsaturated fatty acids increased in the A. capillaris Thumberg. While the total polyphenol contents have not been affected by fermentation, the total sugar contents have dramatically decreased. Scopoletin, which is one of the most important index components in mugworts, was highly abundant in the A. capillaris Thumberg; however, it was not detected in the A. asiaticae Nakai. Small pieces of plant tissue in the surface microstructure were found in the fermented mugworts through the use of the scanning electron microscope (SEM). Volatile flavor compounds via electronic nose showed that the intensity of several peaks has increased and additional seven flavor peaks have been produced after fermentation. The VaporPrintTM images demonstrated a notable difference in flavors between the A. asiaticae Nakai and A. capillaris Thumberg, and the fermentation enabled the mugworts to produce subtle differences in flavor.

ORTHODONTIC BRACKET SHEAR BOND STRENGTH TO Nd:YAG LASER Er:YAG LASER IRRADIATED ENAMEL (Nd : YAG 및 Er : YAG 레이저로 치아표면 조사시 브라켓 전단접착강도에 관한 실험적 연구)

  • Choi, Seung-Hoon;Yang, Won-Sik
    • The korean journal of orthodontics
    • /
    • 제27권1호
    • /
    • pp.141-155
    • /
    • 1997
  • The purpose of this study was to evaluate the effectiveness of the Nd:YAG laser and the Er:YAAG laser on etching enamel for direct bonding of orthodontic bracket. The advantages of laser etching rather than conventional acid etching are to reduce the subsurface demineralization rate, to inhibit the spillage of acid onto uninvolved ""its of enamel, and to save the clinical manipulation time involving drying, trashing and drying again. 189 freshly extracted human premolars were prepared for this research. 165 out of them were divided into 11 groups of 15 teeth. One group was acid etching and the rest groups were irradiated with Nd:YAG laser by four different energy levels(100mj 10pps, 100mj 20pps, 150mj 20pps, 200mj 20pps) and with Er:YAG laser by six different energy levels(60mj 5pps, 60mj 10pps, 100mj 10pps. 200mj 10pps, 200mj l5pps, 400mj 10pps). Shear bond strength was tested with Instron after 24 hours, one week, and three weeks. Twenty-four out of 189 teeth were divided into twelve groups untreated control, acid etching, and ten laser irradiation subgroups. And the ultrastructural enamel surfaces of each group were observed with scanning electron microscope. The results were as follows; 1. The means and the standard deviations of shear bond strength of Nd:YAG and Er:YAU laser irradiation by different energy levels were obtained. 2. Shear bond strengths of Er:YAG laser irradiation groups were higher than those of Nd:YAG laser irradiation groups at the identical energy level. 3. Maximum bond strengths was achieved at the energy of I50mj, 20pps in Nd:YAG laser irradiation groups or 60mj, 10pps in Er:YAG laser irradiation groups. 4. It was acceptible for direct bonding to irradiate lb0mj 20pps with Nd:YAG laser or to irradiate 60mj 10pps with Er:YAG laser considering the results of shear bond strength tests and SEM obsesvation.

  • PDF

Effect of thread design on the marginal bone stresses around dental implant (임플란트 나사산 디자인이 변연골 응력에 미치는 영향)

  • Lee, Sang-Hyun;Jo, Kwang-Heon;Lee, Kyu-Bok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • 제49권4호
    • /
    • pp.316-323
    • /
    • 2011
  • Purpose: The purpose of this study was to investigate the effect of different thread designs on the marginal bone stresses around dental implant. Materials and methods: Standard ITI implant(ITI Dental Implant System; Straumann AG, Waldenburg, Switzerland), 4.1 mm in diameter and 10 mm in length, was selected as control. Test implants of four different thread patterns were created based on control implant, i.e. maintaining all geometrical design of control implant except thread pattern. Four thread designs used in test implants include (1) small V-shape screw (model A), (2) large V-shape screw (model B), (3) buttress screw (model C), and (4) trapezoid screw (model D). Surface area for unit length of implant was 14.4 $mm^2$ (control), 21.7 (small V-shape screw), 20.6 (large V-shape screw), 17.0 (buttress screw) and 28.7 $mm^2$ (trapezoid screw). Finite element models of implant/bone complex were created using an axisymmetric scheme with the use of NISA II/DISPLAY III (Engineering Mechanics Research Corporation, Troy, MI, USA). A load of 100 N applied to the central node on the crown top either in parallel direction or at 30 degree to the implant axis (in order to apply non-axial load to the implant NKTP type 34 element was employed). Quantification and comparison of the peak stress in the marginal bone of each implant model was made using a series of regression analyses based on the stress data calculated at the 5 reference points which were set at 0.2, 0.4, 0.6, 0.8 and 1.0 mm from implant wall on the marginal bone surface. Results: Results showed that although severe stress concentration on the marginal bone cannot be avoided a substantial reduction in the peak stress is achievable using different thread design. The peak marginal bone stresses under vertical loading condition were 7.84, 6.45, 5.96, 6.85, 5.39 MPa for control and model A, B, C and D, respectively. And 29.18, 26.45, 25.12, 27.37, 23.58 MPa when subject to inclined loading. Conclusion: It was concluded that the thread design is an important influential factor to the marginal bone stresses.

Analysis of thermal changes in bone by various insertion torques with different implant designs (서로 다른 형태의 임플란트의 식립토크가 골에 미치는 열변화에 관한 연구)

  • Kim, Min-Ho;Yeo, In-Sung;Kim, Sung-Hun;Han, Jung-Seok;Lee, Jai-Bong;Yang, Jae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • 제49권2호
    • /
    • pp.168-176
    • /
    • 2011
  • Purpose: This study aims at investigating the influence of various insertion torques on thermal changes of bone. A proper insertion torque is derived based on the thermal analysis with two different implant designs. Materials and methods: For implant materials, bovine scapula bone of 15 - 20 mm thickness was cut into 35 mm by 40 - 50 mm pieces. Of these, the pieces having 2 - 3 mm thickness cortical bone were used as samples. Then, the half of the sample was immersed in a bath of $36.5^{\circ}C$ and the other half was exposed to ambient temperature of $25^{\circ}C$, so that the inner and surface temperatures reached $36.5^{\circ}C$ and $28^{\circ}C$, respectively. Two types of implants ($4.5{\times}10\;mm$ Br${\aa}$nemark type, $4.8{\times}10\;mm$ Microthread type) were inserted into bovine scapula bone and the temperature was measured by a thermocouple at 0.2 mm from the measuring point. Finite element method (FEM) was used to analyze the thermal changes at contacting surface assuming that the sample is a cube of $4\;cm{\times}4\;cm{\times}2\;cm$ and a layer up to 2 mm from the top is cortical bone and below is a cancellous bone. Boundary conditions were set on the basis of the shape of cavity after implants. SolidWorks was used as a CAD program with the help of Abaqus 6.9-1. Results: In the in-vitro experiment, the Microhead type implant gives a higher maximum temperature than that of the Br${\aa}$nemark type, which is attributed to high frictional heat that is associated with the implant shape. In both types, an Eriksson threshold was observed at torques of 50 Ncm (Br${\aa}$nemark) and 35 Ncm (Microthread type), respectively. Based on these findings, the Microthread type implant is more affected by insertion torques. Conclusion: This study demonstrate that a proper choice of insertion torque is important when using a specific type of implant. In particular, for the Microthread type implant, possible bone damage may be expected as a result of frictional heat, which compensates for initial high success rate of fixation. Therefore, the insertion torque should be adjusted for each implant design. Furthermore, the operation skills should be carefully chosen for each implant type and insertion torque.

Property of Nickel Silicide with 60 nm and 20 nm Hydrogenated Amorphous Silicon Prepared by Low Temperature Process (60 nm 와 20 nm 두께의 수소화된 비정질 실리콘에 따른 저온 니켈실리사이드의 물성 변화)

  • Kim, Joung-Ryul;Park, Jong-Sung;Choi, Young-Youn;Song, Oh-Sung
    • Journal of the Korean Vacuum Society
    • /
    • 제17권6호
    • /
    • pp.528-537
    • /
    • 2008
  • 60 nm and 20 nm thick hydrogenated amorphous silicon(a-Si:H) layers were deposited on 200 nm $SiO_2$/single-Si substrates by inductively coupled plasma chemical vapor deposition(ICP-CVD). Subsequently, 30 nm-Ni layers were deposited by an e-beam evaporator. Finally, 30 nm-Ni/(60 nm and 20 nm) a-Si:H/200 nm-$SiO_2$/single-Si structures were prepared. The prepared samples were annealed by rapid thermal annealing(RTA) from $200^{\circ}C$ to $500^{\circ}C$ in $50^{\circ}C$ increments for 40 sec. A four-point tester, high resolution X-ray diffraction(HRXRD), field emission scanning electron microscopy(FE-SEM), transmission electron microscopy(TEM), and scanning probe microscopy(SPM) were used to examine the sheet resistance, phase transformation, in-plane microstructure, cross-sectional microstructure, and surface roughness, respectively. The nickel silicide from the 60 nm a-Si:H substrate showed low sheet resistance from $400^{\circ}C$ which is compatible for low temperature processing. The nickel silicide from 20 nm a-Si:H substrate showed low resistance from $300^{\circ}C$. Through HRXRD analysis, the phase transformation occurred with silicidation temperature without a-Si:H layer thickness dependence. With the result of FE-SEM and TEM, the nickel silicides from 60 nm a-Si:H substrate showed the microstructure of 60 nm-thick silicide layers with the residual silicon regime, while the ones from 20 nm a-Si:H formed 20 nm-thick uniform silicide layers. In case of SPM, the RMS value of nickel silicide layers increased as the silicidation temperature increased. Especially, the nickel silicide from 20 nm a-Si:H substrate showed the lowest RMS value of 0.75 at $300^{\circ}C$.