• Title/Summary/Keyword: 표면온도 해석

Search Result 422, Processing Time 0.03 seconds

Study on deep Si etching mechanism using in-situ surface temperature monitoring in $SF_6/O_2$ plasma

  • Im, Yeong-Dae;Lee, Seung-Hwan;Yu, Won-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.405-405
    • /
    • 2010
  • Thermocouple 을 통해 Inductively coupled plasma 에 노출된 실리콘 기판 표면온도를 공정조건 변화 에 따라 실시간 (in-situ) 측정하였다. 이를 바탕으로 공정변화에 따른 플라즈마 내 활성종의 거동을 연구하였다. 더 나아가 기판의 표면온도변화 및 활성종의 거동해석을 토대로 공정변화에 의한 딥 실리콘 구조형성 메커니즘을 해석하였다. 플라즈마에 노출된 기판표면 온도를 상승시키는 주 활성종은 positive ion 이며 ICP power, Bias power, 플라즈마 압력 변화에 따라 positive ion 의 밀도 및 가속에너지가 변화하는데 이러한 거동변화는 기판의 표면온도를 변화시킴을 알 수 있었다. 딥 실리콘 구조의 측벽 및 바닥에 형성되어 있는 passivaiton layer 즉 $SiO_xF_y$(silicon oxyflouride) 는 온도에 매우 민감한 물질이며 이는 딥 실리콘 구조 내부로 입사하는 positive ion 거동변화에 따라 그 성질이 변화하여 deep Si 구조 형상을 변화시킴을 알 수 있었다. 기판표면 온도가 $0^{\circ}C$ 이하의 극저온으로 유지된 상황에서 플라즈마를 방전할 경우 positive ions 의 가속에너지로 인해 기판표면온도가 상승하며 액화질소 유량증가를 통해 다시 기판의 표면온도를 유지시킬 수 있었다. 이를 통해 플라즈마 방전 전과 방전 후의 기판 표면온도는 상온의 기판뿐만 아니라 극저온의 기판에서도 다름을 알 수 있었다. 냉각환경 변화에 따른 딥 실리콘 구조형성 메커니즘을 positive ions 거동 그리고 온도 감소에 의한 $SiO_xF_y$ 성질 변화를 이용해 해석할 수 있었다.

  • PDF

Three-Dimensional Conjugate Heat Transfer Analysis for Infrared Target Modeling (적외선 표적 모델링을 위한 3차원 복합 열해석 기법 연구)

  • Jang, Hyunsung;Ha, Namkoo;Lee, Seungha;Choi, Taekyu;Kim, Minah
    • Journal of KIISE
    • /
    • v.44 no.4
    • /
    • pp.411-416
    • /
    • 2017
  • The spectral radiance received by an infrared (IR) sensor is mainly influenced by the surface temperature of the target itself. Therefore, the precise temperature prediction is important for generating an IR target image. In this paper, we implement the combined three-dimensional surface temperature prediction module against target attitudes, environments and properties of a material for generating a realistic IR signal. In order to verify the calculated surface temperature, we are using the well-known IR signature analysis software, OKTAL-SE and compare the result with that. In addition, IR signal modeling is performed using the result of the surface temperature through coupling with OKTAL-SE.

Changes in Air Temperature and Surface Temperature of Crop Leaf and Soil (기온과 작물 잎 및 토양 표면온도의 변화양상 분석)

  • Lee, Byung-Kook;Jung, Pil-Kyun;Lee, Woo-Kyun;Lim, Chul-Hee;Eom, Ki-Cheol
    • Journal of Climate Change Research
    • /
    • v.6 no.3
    • /
    • pp.209-221
    • /
    • 2015
  • Temperature is one of the most important factors affecting crop growth. The diurnal cycle of the scale factor [Tsc] for air temperature and the surface temperature of crop leaf and soil could be estimated by the following equation : $[Tsc]=0.5{\times}sin(X+C)+0.5$. The daily air temperature (E[Ti]) according to the E&E time [X] can be estimated by following equation using average (Tavg), maximum (Tm) and minimum (Tn) temperature : $E[Ti]=Tn+(Tm-Tn){\times}[0.5{\times}sin\;\{X+(9.646Tavg+703.65)\}+0.5]$. The crop leaf temperature in 24th June 2014 was high as the order of red pepper without mulching > red pepper with mulching > soybean under drought > soybean with irrigation > Chinese cabbage. The case in estimating crop leaf surface temperature using air temperature and soil surface temperature was lower in the deviation compared to the case using air temperature for Chinese cabbage and red pepper. These results can be utilized for the crop models as input data with estimation.

Mathematical Prediction of the Lunar Surface Temperature Using the Lumped System Analysis Method (집중계 해석법을 이용한 달 표면온도 예측)

  • Kim, Taig Young;Lee, Jang-Joon;Chang, Su-Young;Kim, Jung-Hoon;Hyun, Bum-Seok;Cheon, Hyeong Yul;Hua, Hang-Pal
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.4
    • /
    • pp.338-344
    • /
    • 2018
  • The lunar surface temperature is important as a environmental parameter for the thermal design of the lunar exploration vehicles such as orbital spacecraft, lander, and rovers. In this study, the temperature is numerically predicted through a simplified lumped system model for the energy conservation. The physical values required for the analysis of the energy equation are derived by considering the geometric shape, and the values presented in the previous research results. The areal specific heat, which is the most important thermo-physical property of the lumped system model, was extracted from the temperature measurements by the Diviner loaded on the LRO, and the value was predicted by calibration of the analytical model to the measurements. The predicted temperature distribution obtained through numerical integration has sufficient accuracy to be applied to the thermal design of the lunar exploration vehicles.

Thermal Signature Characteristics of Clothed Human Considering Thermoregulation Effects (체온 조절 작용을 고려한 의복 착용 시의 인체 열상신호 특성 분석)

  • Chang, Injoong;Bae, Ji-Yeul;Lee, Namkyu;Kwak, Hwykuen;Cho, Hyung Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.2
    • /
    • pp.109-116
    • /
    • 2019
  • Survivability of soldiers has been greatly threatened by the development of thermal observation device(TOD). Therefore, infrared, especially thermal, stealth technology is applied to combat suit to avoid detection from TOD. In this study, prior to the thermal camouflage performance evaluation of combat suit, thermal signature characteristic from clothed the human body was analyzed considering the realistic condition for human surface temperature compared to that from unclothed human body. To get the realistic surface temperature distribution of human, thermoregulation and multi-layer skin structure model is applied to the human model. Based on temperature distribution, surface diffuse radiance in thermal range is calculated and by assuming the background conditions, contrast radiance intensity(CRI) characteristic of human body is analyzed. By wearing clothing, the CRI between background and human body became reduced in low emissive background but in high emissive background, the contrast is much more prominent. Therefore, this issue should be considered in design process of thermal camouflage combat suit.

Temperature Measurement of the Contact Surface by Using the Hot Spot (Hotspa을 이용한 접촉표면의 온도측정)

  • 정동윤
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1992.11a
    • /
    • pp.50-56
    • /
    • 1992
  • 공업재료의 표면은 수많은 돌기들로 구성되어 있으며 이러한 돌기들의 접촉으로 진실접촉이 이루어진다. 그러므로 마찰은 겉보기 접촉면적과는 무관하며 진실접촉면에서 일어난다. 표면의 한 돌기가 접촉면과 상대운동을 함으로 인하여 마찰열이 발생된다. 이러한 마찰에너지 발산의 결과로서 진실접촉면적 주위의 국부적인 표면 온도가 상승되며 따라서 표면의 평균온도가 상승된다. 이러한 표면온도를 결정하기 위한 이론적 및 실험적인 방법이 많이 제시되어왔다. 정적상태에서의 표면온도는 Block(1937)과 Jaeger(1942)에 의해 이론적으로 소개하였다. Jaeger는 열원의 위치와 상대적인 접촉운동 그리고 크기 및 경계조건 등의 특정한 조건 하에서 진실접촉점의 온도를 계산하였다. 이에 Bany와 Baber(1984)는 그들의 경계조건이 잘목 정의되었음을 지적하고 더욱 세분화된 경계조건으로 온도분포를 유도한 바 있다. Ling(1969)은 접촉점에서의 온도가 주변의 겉보기 접촉면적의 온도보다 훨씬 높다는 것을 수치해석으로 밝혀냈다. 본 연구는 고속정밀촬영기를 이용하여 진실접촉점에서 발생하는 Hot spot의 온도분포를 실험을 통하여 규명하고 그 결과를 Geoim과 Winer의 이론식에 적용하므로 식의 유용성을 검증하는데 그 목적이 있다.

  • PDF

Reexamination of the combustion instability of solid propellant with radiative heat transfer (복사 열전달을 고려한 고체 추진제의 연소 불안정 현상에 관한 재해석)

  • 이창진;변영환;이재우
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.10-11
    • /
    • 1997
  • 고체 추진제를 사용하는 추진 시스템을 개발하는데 가장 커다란 문제로 인식되고 있는 것은 추진제의 연소 특성을 이해하는 일이다. 그 중에서도 연소실의 압력 진동과 추진제 벽면으로 흡수되는 복사 열전달에 의한 연소율(burning rate)의 변화로 인하여 발생하는 연소 불안정에 대한 이해는 아직도 완전히 규명되지 않고 있다. 고체 추진제의 연소 불안정에 대한 이론적 해석은 준-정상 1차원 해석(Quasi-Steady Homogeneous One-Dimension) 방법에 의하여 단순화된 지배방정식을 해석하는 것이 일반적으로 잘 알려져 있는 방법이다. 이 가정은 고체 추진제가 연수되는 영역을 두께가 매우 얇은 영역의 표면반응영역(surface reaction layer)과 화학반응이 없는 응축상태영역(condensed phase zone) 그리고 기체상태의 연료와 화염이 존재하는 기체상태영역(gas phase zone) 등의 3영역으로 구분하며, 기체상태영역에서 발생하는 교란에 대한 응축상태영역의 반응시간 크기(response time scale)가 매우 크기 때문에 응축상태영역의 반응은 준 정상적으로 일어난다고 가정하는 것이다.그러나, 연소실의 온도가 $3000^{\circ}K$ 정도의 높은 온도이어서 복사 열전달에 의한 고체 추진제의 가열이 중요한 열전달 방법으로 작용하게 되므로 이를 무시한 이론적 해석은 물리적인 중요성이 약하여질 수밖에 없다. 본 연구에서는 기체영역으로부터 전달되는 복사 열전달은 투명(transparent)한 표면반응영역을 통과하여 응축상태영역에서 모두 흡수되며 추진제 표면에서의 복사열방출(emission)을 고려하였다. 또한 연소불안정 현상을 해석하기 위하여 표면반응영역에서의 경계조건은 선형교란량으로 대치하는 Zn(Zeldovich-Novozhilov) 방법을 사용하였다. 이 방법은 기체상태영역에 대한 구체적인 해석없이도 연소불안정 현상을 해석할 수 있는 장점이 잇다. 즉 응축상태영역에서의 연소율과 표면온도는 각각 기체영역으로부터 전달되는 온도구배와 연소압력, 그리고 복사 열전달의 함수관계이므로 선형교란에 의한 추진제표면에서의 교란경계조건을 얻을 수 잇으며, 응축영역의 교란지배방정식과 함께 사용하여 압력교란과 복사 열전달의 교란에 대한 연소율의 교란 증감 여부를 판단하여 연소 불안정 현상을 해석할 수 있다.

  • PDF

액막의 유동 및 온도계산 모델에 의한 PCCS 열전달 현상 해석

  • 김성오;황영동;김영인;배윤영;장문희
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.584-589
    • /
    • 1998
  • 범용 전산유체 해석코드인 CFX 4.1을 사용하여 철재격납용기 표면을 전열면으로 이용하는 피동격납용기냉각계통에 대한 열전달 현상해석을 수행하였다. 철재격납용기 내부와 외부 채널에서 발생하는 열전달 현상을 모사하기 위하여 액막의 유동 및 온도계산 모델을 범용 전산유체해석코드인 CFX4.1에 적용하여 철재격납용기 내.외부의 표면을 흐르는 액막의 높이, 액막내 온도분포, 철재격납용기 내.외부의 온도, 유속 및 부피분율 등을 계산하는 복합 열전달 해석 방법론을 개발하였다. 해석결과는 향후 실험 둥을 통한 검증이 필요하나 피동형 격납용기템각계통에서 발생하는 물리적 현상들의 복합적인 거동 분석에 사용될 수 있는 것으로 평가되었다.

  • PDF

Thermal Stress Estimation due to Temperature Difference in the Wall Thickness for Thinned Feedwater Heater Tube (감육된 급수가열기 튜브의 두께 방향 온도차이에 의해 발생하는 열응력 평가)

  • Dinh, Hong Bo;Yu, Jong Min;Yoon, Kee Bong
    • Journal of Energy Engineering
    • /
    • v.28 no.3
    • /
    • pp.1-9
    • /
    • 2019
  • A major stress determining the remaining life of the tube in feedwater heater of fossil fuel power plant is hoop stress by the internal pressure. However, thermal stress due to temperature difference across the wall thickness also contributed to reduce the remaining life of the tube. Therefore, thermal loading must be considered even though the contribution of internal pressure loading to the stresses of the tube was known to be much higher than that of the thermal loading. In this study, thermal stress of the tubes in the de-superheating zone was estimated, which was generated due to the temperature difference across the tube thickness. Analytic equations were shown for determining the hoop stress and the radial stress of the tube with uniform thinning and for the temperature across the tube thickness. Accuracy and effectiveness of the analytic equations for the stresses were verified by comparing the results obtained by the analytic equations with those obtained from finite element analysis. Using finite element analysis, the stresses for eccentric thinning were also determined. The effect of heat transfer coefficient on thermal stress was investigated using series of finite element analyses with various values of heat transfer coefficient for both inner and outer surface of the tube. It was shown that the effect of heat transfer coefficient at outer surface was larger than that of heat transfer coefficient at inner surface on the thermal stress of the tube. Also, the hoop stress was larger than the radial stress for both cases of uniformly and eccentrically thinned tubes when the thermal loading was only considered without internal pressure loading.

Lumped System Analysis on the Lunar Surface Temperature Using the Bottom Conductive Heat Flux Model (달 표면온도 예측을 위한 집중계 해석방법과 하부 열유속 모델의 적용)

  • Kim, Taig Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.1
    • /
    • pp.66-74
    • /
    • 2019
  • Instead of securing thermophysical properties throughout the entire lunar surface, a theoretical method to predict the lunar surface temperature accurately using improved Lumped System Model (LSM) was developed. Based on the recently published research, thermal mass per unit area at the top regolith layer is assumed uniform. The function of bottom conductive heat flux was introduced under the theoretical background. The LSM temperature prediction agrees well with the DLRE measurement except for dusk, dawn and high latitude region where the solar irradiation is weak. The relative large temperature discrepancy in such region is caused by the limit of the bottom conductive heat flux model. The surface temperature map of the moon generated by the LSM method is similar to the DLRE measurement except for the anomalous temperature zones where surface topography and thermophysical properties appear in highly uneven.