DOI QR코드

DOI QR Code

Thermal Stress Estimation due to Temperature Difference in the Wall Thickness for Thinned Feedwater Heater Tube

감육된 급수가열기 튜브의 두께 방향 온도차이에 의해 발생하는 열응력 평가

  • Dinh, Hong Bo (Department of Mechanical Engineering, Chung Ang University) ;
  • Yu, Jong Min (Department of Mechanical Engineering, Chung Ang University) ;
  • Yoon, Kee Bong (Respectively, Department of Mechanical Engineering, Chung Ang University)
  • 딘홍보 (중앙대학교 대학원 기계공학과) ;
  • 유종민 (중앙대학교 대학원 기계공학과) ;
  • 윤기봉 (중앙대학교 기계공학부)
  • Received : 2019.07.11
  • Accepted : 2019.08.14
  • Published : 2019.09.30

Abstract

A major stress determining the remaining life of the tube in feedwater heater of fossil fuel power plant is hoop stress by the internal pressure. However, thermal stress due to temperature difference across the wall thickness also contributed to reduce the remaining life of the tube. Therefore, thermal loading must be considered even though the contribution of internal pressure loading to the stresses of the tube was known to be much higher than that of the thermal loading. In this study, thermal stress of the tubes in the de-superheating zone was estimated, which was generated due to the temperature difference across the tube thickness. Analytic equations were shown for determining the hoop stress and the radial stress of the tube with uniform thinning and for the temperature across the tube thickness. Accuracy and effectiveness of the analytic equations for the stresses were verified by comparing the results obtained by the analytic equations with those obtained from finite element analysis. Using finite element analysis, the stresses for eccentric thinning were also determined. The effect of heat transfer coefficient on thermal stress was investigated using series of finite element analyses with various values of heat transfer coefficient for both inner and outer surface of the tube. It was shown that the effect of heat transfer coefficient at outer surface was larger than that of heat transfer coefficient at inner surface on the thermal stress of the tube. Also, the hoop stress was larger than the radial stress for both cases of uniformly and eccentrically thinned tubes when the thermal loading was only considered without internal pressure loading.

화력발전소에서 사용되는 급수 가열기 튜브에서는 사용중에 두께 감육이 발생하여 수명이 소진된다. 감육에 의한 파열 우려가 있으면 수명이 종료되는데, 파열조건을 결정하는 튜브 벽의 응력은 내압에 의한 원주방향 응력의 영향이 가장 큰 것으로 알려져 있지만, 튜브 내외부 온도차이에 의한 열응력에 대한 고려 또한 필요하다. 튜브 두께 방향의 온도차이는 열응력을 발생시켜 튜브의 잔여수명을 단축시키는 영향을 준다. 본 논문에서는 급수가열기 내에서 튜브 내표면과 외표면에 온도 차이가 가장 큰 과열저감구역(de-superheating zone)을 대상으로 열응력을 연구하였다. 원주방향으로 균일하게 감육된 튜브에서 두께방향의 온도차 때문에 발생하는 원주방향 응력, 반경방향 응력 및 온도분포를 평가하기 위한 해석적 수식을 제시하였다. 제시된 해석식의 정확도와 효과를 검증하기 위해 식으로부터의 계산된 결과를 유한요소해석으로 평가한 정확한 결과와 비교하였다. 또한, 유한요소해석으로 편심 감육된 튜브에 대한 응력도 평가하였다. 열응력 해석 및 온도 분포 해석에서 대류열전달 계수의 영향을 분석하기 위해 튜브 내표면 및 외표면에 여러 값의 열대류 계수를 적용하여 해석 결과를 비교하였다. 해석 결과 튜브 내표면보다 외표면의 열대류 계수가 응력 발생에 더 큰 영향을 주는 것으로 나타났다. 열하중만 고려된 경우, 균일 감육과 편심 감육 상태 모두에서 원주방향 응력이 반경방향 응력보다 크게 평가되었다.

Keywords

References

  1. Garud, Y. S., et al., 1993, 3D stress/deflection analysis of tube sheet and U-tubes, Nuclear Engineering and Design, Vol. 143, No. 2-3, pp. 151-158 https://doi.org/10.1016/0029-5493(93)90219-Y
  2. Garud, Y. S., 1993, Service stresses in expansion transitions of heat-exchanger U-tube joints, Nuclear Engineering and Design, Vol. 143, No. 2-3, pp. 143-149 https://doi.org/10.1016/0029-5493(93)90218-X
  3. Poworoznek, P. P., 2008, Elastic-plastic behavior of a cylinder subject to mechanical and thermal loads, M.Sc. thesis, Rensselaer Polytechnic Institute, Hartford, CT
  4. Kanlikama, B., et al., 2013, Coupled thermoelastic analysis of thick-walled pressurized cylinders, International Journal of Energy and Power Engineering, Vol. 2 No. 2, pp. 60-68 https://doi.org/10.11648/j.ijepe.20130202.15
  5. Eslami, M. R., et al., Theory of elasticity and thermal stresses, Vol. 197, G. M. L. Gladwell
  6. Dinh, H. B., et al., 2018, Plugging criteria for thinned high pressure feedwater heater tubes considering pressure and thermal loading, Journal of Mechanical Science and Technology, Vol. 32, No. 12, pp. 5637-5645 https://doi.org/10.1007/s12206-018-1110-z
  7. Cengel, Y. A. Heat transfer: A practical approach, Second edition
  8. Standards for Shell and Tube Heat Exchangers, Heat Exchange Institute Inc., 2013
  9. ASME Boiler and Pressure Vessel Code, Section I: Rules for Construction of Power Boilers, American Society of Mechanical Engineers, 2010
  10. ASME Boiler and Pressure Vessel Code, Section II, Part D: Properties, American Society of Mechanical Engineers, 2010
  11. Dhanuskodi, R., et al., 2011, Analysis of variation in properties and its impact on heat transfer in Sub and Supercritical conditions of water/steam, International Journal of Chemical Engineering and Applications, Vol. 2, No. 5, pp. 320-325 https://doi.org/10.7763/IJCEA.2011.V2.127
  12. Abaqus, Abaqus 6.14 Documentation, Dassault Systems Simulia Corporation, 2014, pp. 651
  13. API, API 579-1/ASME FFS-1: Fitness-for-service, The American Society of Mechanical Engineers, 2007
  14. EPRI, Guideline for condition assessment and inspection of fossil plant heat exchangers, Final report, 2001
  15. Lee, S. H., et al., 2015, Thinned pipe management program of Korean nuclear power plants, Corrosion Science and Technology, Vol. 14, No. 1, pp. 1-11 https://doi.org/10.14773/cst.2015.14.1.1
  16. Hwang, K. M., 2013, Cause analysis for the wall thinning and leakage of a small bore piping downstream of an orifice, Corrosion Science and Technology, Vol. 12, No. 5, pp. 227-232 https://doi.org/10.14773/cst.2013.12.5.227