DOI QR코드

DOI QR Code

Lumped System Analysis on the Lunar Surface Temperature Using the Bottom Conductive Heat Flux Model

달 표면온도 예측을 위한 집중계 해석방법과 하부 열유속 모델의 적용

  • Kim, Taig Young (Department of Mechanical Engineering, Korea Polytechnic University)
  • Received : 2018.10.11
  • Accepted : 2018.11.21
  • Published : 2019.01.01

Abstract

Instead of securing thermophysical properties throughout the entire lunar surface, a theoretical method to predict the lunar surface temperature accurately using improved Lumped System Model (LSM) was developed. Based on the recently published research, thermal mass per unit area at the top regolith layer is assumed uniform. The function of bottom conductive heat flux was introduced under the theoretical background. The LSM temperature prediction agrees well with the DLRE measurement except for dusk, dawn and high latitude region where the solar irradiation is weak. The relative large temperature discrepancy in such region is caused by the limit of the bottom conductive heat flux model. The surface temperature map of the moon generated by the LSM method is similar to the DLRE measurement except for the anomalous temperature zones where surface topography and thermophysical properties appear in highly uneven.

달 표면 전체에 걸쳐 열물성치를 확보하는 대신 단위 면적당 열질량을 이용하여 달 표면온도를 정확히 예측할 수 있는 개선된 집중계(Lumped System Model, LSM) 해석방법을 제시하였다. 최근에 발표된 연구에 기초하여 표토층 최상단의 단위 면적당 열 질량이 균일하다고 가정하고, 하부면 전도열유속 방정식을 이론적인 근거 하에 도입함으로써 DLRE 측정온도와 상당한 정도 잘 일치하는 달 표면의 온도지도를 구하였다. LSM 온도예측은 태양복사가 약한 황혼, 새벽 및 고위도 지역을 제외하면 DLRE 측정과 잘 일치하며, 이러한 지역에서의 온도 불일치는 하부 전도열유속 모델의 한계에 기인한다. 표면 지형과 열물성치가 매우 불균일한 지역에서 나타나는 비정상온도 영역을 제외하고 LSM 분석으로 생성된 달 표면 온도지도는 DLRE 측정 결과와 유사하다.

Keywords

References

  1. Cremers, C. J., "Thermophysical properties of lunar materials: Part II; Heat transfer within the lunar surface layer," Advances in Heat Transfer, Vol. 10, 1974, pp.39-83. https://doi.org/10.1016/S0065-2717(08)70109-6
  2. Siegel, R., and Howell, J., Thermal Radiation Heat Transfer, 4th ed. Taylor & Francis, 2002.
  3. Bauch, K. E., Hiesinger, H., Helbert, J., Robinson, M. S., and Scholten, F., "Estimation of lunar surface temperatures and thermophysical properties: test of a thermal model in preparation of the MERTIS experiment onboard BepiColombo," Planetary and Space Science, Vol. 101, 2014, pp.27-36. https://doi.org/10.1016/j.pss.2014.06.004
  4. Grott, M., Knollenberg, J., and Krause, C., "Apollo lunar heat flow experiment revisited: A critical reassessment of the in situ thermal conductivity determination," J. Geophys. Res., Vol. 115, 2010, E11005. https://doi.org/10.1029/2010JE003612
  5. Vasavada, A. R., Bandfield, J. L., Greenhagen, B. T., Hayne, P. O., Siegler, M. A., Williams, J.-P., and Paige, D. A., 2012, "Lunar equatorial surface temperatures and regolith properties from the diviner lunar radiometer experiment," J. Geophys. Res., Vol. 117, 2012, E00H18.
  6. Hemingway, B. S., Robie, R. A., and Wilson, W. H., "Specific heats of lunar soils, basalt, and breccias from the Apollo 14, 15, and 16 landing sites, between 90 and 350K," In: Proceedings of the Lunar Science Conference, Vol. 4, 1973, pp.2481-2487.
  7. Keihm, S. J., "Interpretation of the lunar microwave brightness temperature spectrum: Feasibility of orbital heat flow mapping," Icarus, Vol. 60, 1984, pp.568-589. https://doi.org/10.1016/0019-1035(84)90165-9
  8. Chin, G., Brylow, S., Foote, M., Garvin, J., Kasper, J., Keller, J., Litvak, M., Mitro-fanov, I., Paige, D., Raney, K., Robinson, M., Sanin, A., Smith, D., Spence, H., Spudis, P., Stern, S. A., and Zuber, M., "Lunar reconnaissance orbiter overview: the instrument suite and mission," Space Sci. Rev., Vol. 129, 2007, pp.391-419. https://doi.org/10.1007/s11214-007-9153-y
  9. Paige, D. A., et al., "The Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment," Space Sci. Rev., Vol. 150, 2010, pp.125-160. https://doi.org/10.1007/s11214-009-9529-2
  10. Williams, J. P., Paige, D. A., Greenhagen, B. T., and Stefan-Nash, E., "The global surface temperatures of the Moon as measured by the Diviner Lunar Radiometer Experiment," Icarus, Vol. 283, 2017, pp.300-325. https://doi.org/10.1016/j.icarus.2016.08.012
  11. Kim, T. Y., Lee, J., Chang, S., Kim, J., Hyun, B., Cheon, H. Y., and Hua, H., "Mathematical Prediction of the Lunar Surface Temperature Using the Lumped System Analysis Method," Journal of The Korean Society for Aeronautical and Space Sceinces, Vol. 46, No. 4, 2018, pp.338-344. https://doi.org/10.5139/JKSAS.2018.46.4.338
  12. Hayne, P. O., Bandfield, J. L., Siegler, M. A., Vasavada, A. R., Ghent R. R., Williams, J.-P., Greenhagen, B. T., Aharonson, O., Elder, C. L., Lucey, P. G., and Paige, A. D., "Global regolith thermophysical properties of the Moon from the Diviner Lunar Radiometer Experiment," Journal of Geophysical Research, 2017, pp.2371-2400.
  13. Bandfield, J. L., Hayne, P. O., Williams, J.-P., Greenhagen, B. T., and Paige, D. A., "Lunar surface roughtness derived from LRO diviner radiometer observations," Icarus, Vol. b248, 2015, pp.357-372
  14. Hu, G. P., Zheng, Y. C., Xu, A. A., and Tang, Z. S., "Lunar surface temperature of global Moon: Preparation of database with topographic and albedo effects," IEEE Geoscience and Remote Sensing Letters, Vol. 13, 2016, pp.110-114. https://doi.org/10.1109/LGRS.2015.2499305
  15. Vaniman, D., Rudy, R., Heiken, G., Olhoeft, G., and Mendell, W., The Lunar Environment, in Lunar Source Book, eds. G. Heiken, D. Vaniman and B. French, 1991.
  16. Vasavada, A. R., Paige, D. A., and Wood, S. E., "Near-surface temperatures on Mercury and the Moon and the stability of polar ice deposits," Icarus, Vol. 141, 1999, pp.179-193. https://doi.org/10.1006/icar.1999.6175
  17. Ferziger, J. H., Numerical Methods for Engineering Application, John Wiley & Sons, 1981.