• Title/Summary/Keyword: 표면압

Search Result 538, Processing Time 0.027 seconds

Study on the Insulation Properties of Silicone Rubber (ATH 고충진 실리콘 고무의 절연특성 연구)

  • Kang, Dong-Pil;Park, Hoy-Yul;Ahn, Myeong-Sang;Kim, Dae-Whan;Myung, In-Hae;Lee, Hoo-Bum;Oh, Se-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1442-1444
    • /
    • 2003
  • 폴리머 애자용 shed 재료의 전기방전에 대한 열화내성과 표면이 오염된 조건하에서도 우수한 발수성 유지는 제품의 장기성능에 있어서 가장 중요한 인자들이다. 내트래킹성 확보를 위한 보강재로는 ATH가 주로 사용되고 있으며 ATH의 첨가량이 많을 수록 내트래킹성은 대체로 향상되는 것으로 되어 있다. 그러나 애자 제조시 무결점 성형성의 만족이 대단히 중요하기 때문에 ATH를 고충진하는 경우 사용하는 process oil들의 종류 및 첨가량을 고려한 ATH 첨가량의 최적화는 필요하다. 본 논문에서는 ATH를 170 part로 다량으로 첨가하면서 화학적 구조와 점도가 다른 몇 가지 실리콘 fliud들을 사용하여 무결점 성형에 적합한 가소도를 갖는 컴파운드를 제조하여 기본물성과 초고압 옥외절연물의 shed 재료로서 장기성능에 영향을 주는 방전열화내성과 표면발수성의 회복특성을 평가하였다. 컴파운드의 성형작업성과 관련이 큰 가소도는 fluid 점도에 따라 상당한 차이를 보이므로 실리콘 fluid 종류의 선택과 첨가량의 최적화에는 성형작업성, 발수성 회복특성, 열화내성 등의 고려가 필요하다. 무결점 애자성형을 위한 진공 사출에서 고무 컴파운드의 가소도가 중요한데 동일한 ATH첨가조건에서 일정한 가소도를 갖게 하는데 필요한 양은 fluid들의 종류에 따라서 상당한 차이가 있었다. 코로나 처리후 발수성 회복특성은 fluid들의 분자크기와 반응기의 종류에 따라 상당히 영향을 받았으며 분자가 클수록 초기회복속도는 다소 느렸지만 평상시에 늘 유지되는 상시발수성은 다소 높게 유지되었다. 아크와 트래킹 방전에 의한 무게 감소는 ATH가 과량으로 첨가되어 상당히 적었으며 fluid의 분자가 크면서 페닐기를 가진 fluid들이 첨가된 고무가 우수한 특성을 보였다.

  • PDF

heat Budget over the South-Western Part of the Japan Sea in the Month of January and Cold Water Mass in the Korea Strait (1월의 동해 남서해역에서의 열수지와 대한해협의 냉수괴)

  • Han, Young Ho
    • 한국해양학회지
    • /
    • v.7 no.1
    • /
    • pp.19-23
    • /
    • 1972
  • Based on the data collected during January of 1963, 1964 and 1965, heat transfer from the sea to the air over the south-western part of the Japan Sea was evaluated by the formula of Jacobs. The mean sensible heat transfer and the rate of evaporation in the mild winter of 1964 were 360ly day$\^$-1/ and 8.1mm day$\^$-1/, respectively. However, these values increased as much as 690ly day$\^$-1/ and 14.4mm day$\^$-1/ in the severe winter of 1963. The heat hudget of the Japan Sea in January were related to the magnitude of cold water mass formed in August in the Korea Strait.

  • PDF

Study of the Diffusion of Phosphorus Dependent on Temperatures for Selective Emitter Doping Process of Atmospheric Pressure Plasma (대기압 플라즈마의 선택적 도핑 공정에서 온도에 의한 인(Phosphorus)의 확산연구)

  • Kim, Sang Hun;Yun, Myoung Soo;Park, Jong In;Koo, Je Huan;Kim, In Tae;Choi, Eun Ha;Cho, Guangsup;Kwon, Gi-Chung
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.5
    • /
    • pp.227-232
    • /
    • 2014
  • In this study, we propose the application of doping process technology for atmospheric pressure plasma. The plasma treatment means the wafer is warmed via resistance heating from current paths. These paths are induced by the surface charge density in the presence of illuminating Argon atmospheric plasmas. Furthermore, it is investigated on the high-concentration doping to a selective partial region in P type solar cell wafer. It is identified that diffusion of impurities is related to the wafer temperature. For the fixed plasma treatment time, plasma currents were set with 40, 70, 120 mA. For the processing time, IR(Infra-Red) images are analyzed via a camera dependent on the temperature of the P type wafer. Phosphorus concentrations are also analyzed through SIMS profiles from doped wafer. According to the analysis for doping process, as applied plasma currents increase, so the doping depth becomes deeper. As the junction depth is deeper, so the surface resistance is to be lowered. In addition, the surface charge density has a tendency inversely proportional to the initial phosphorus concentration. Overall, when the plasma current increases, then it becomes higher temperatures in wafer. It is shown that the diffusion of the impurity is critically dependent on the temperature of wafers.

Emulsion Grafting of Glycidyl Methacrylate onto Plasma-treated Polypropylene Surface (플라즈마 처리된 폴리프로필렌 표면 위에 글리시딜메타크릴레이트의 에멀젼 그래프팅)

  • Ji, Han-Sol;Liu, Xuyan;Choi, Ho-Suk;Kim, Jae-Ha;Park, Han-Oh
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.65-70
    • /
    • 2012
  • Glycidyl methacrylate (GMA) was used to introduce epoxy groups on the surface of polypropylene (PP) plate, used as a substrate, through plasma-induced graft copolymerization. Emulsion polymerization was applied for graft copolymerization of GMA and was compared with conventional solution polymerization to confirm its effect. Plasma treatment conditions under one atmospheric pressure were fixed as follows; the RF power of 200 W, the treatment time of 30 sec, the Ar gas flow rate of 6 LPM, and the exposure time of treated PP samples in air of 5 min. For graft-copolymerization, GMA concentration, reaction temperature, and reaction time was optimized to maximize the grafting degree of GMA. The maximum grafting degree of GMA was obtained at the condition of 12%-GMA concentration, $90^{\circ}C$ reaction temperature, and 5 hr-reaction time. Analysis results supported that the emulsion polymerization was more effective than the solution polymerization for grafting more GMAs on the surface of PP plate under the same reaction conditions.

Synthesis of size-controlled ZnO tetrapods sizes using atmospheric microwave plasma system and evaluation of its photocatalytic property (대기압 마이크로웨이브 플라즈마를 이용한 다양한 크기의 ZnO tetrapod 합성 및 광촉매 특성 평가)

  • Heo, Sung-Gyu;Jeong, Goo-Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.6
    • /
    • pp.340-347
    • /
    • 2021
  • Among various metal oxide semiconductors, ZnO has an excellent electrical, optical properties with a wide bandgap of 3.3 eV. It can be applied as a photocatalytic material due to its high absorption rate along with physical and chemical stability to UV light. In addition, it is important to control the morphology of ZnO because the size and shape of the ZnO make difference in physical properties. In this paper, we demonstrate synthesis of size-controlled ZnO tetrapods using an atmospheric pressure plasma system. A micro-sized Zn spherical powder was continuously introduced in the plume of the atmospheric plasma jet ignited with mixture of oxygen and nitrogen. The effect of plasma power and collection sites on ZnO nanostructure was investigated. After the plasma discharge for 10 min, the produced materials deposited inside the 60-cm-long quartz tube were obtained with respect to the distance from the plume. According to the SEM analysis, all the synthesized nanoparticles were found to be ZnO tetrapods ranging from 100 to 600-nm-diameter depending on both applied power and collection site. The photocatalytic efficiency was evaluated by color change of methylene blue solution using UV-Vis spectroscopy. The photocatalytic activity increased with the increase of (101) and (100) plane in ZnO tetrapods, which is caused by enhanced chemical effects of plasma process.

Sterilization of Bacteria and Fungi in Cultural Heritages using Atmospheric Pressure Plasma Jet System (대기압 플라즈마 제트 시스템을 이용한 문화재 내 세균류 및 진균류의 살균)

  • Jo, Sung-Il;Park, Dong-Min;Lee, Byeong Hoon;So, Myoung-Gi;Ha, Suk-Jin;Jeong, Goo-Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.6
    • /
    • pp.285-292
    • /
    • 2020
  • Ancient cultural heritage made up of wood and organic fibers have been easily disintegrated or decomposed by various microorganisms like bacteria and fungi. Here, we demonstrate the effectiveness of an atmospheric pressure plasma jet (APPJ) system to sterilize the microorganisms in tangible cultural heritage. We collected several specimens from the surface of ancient documents and wooden artifacts. Finally, two bacteria and two fungi were prepared and sterilized using the APPJ treatment. The APPJ system is beneficial to its simple apparatus, quick operation time, and cost-effectiveness. Bacteria were almost sterilized within only 1 min treatment using 15 % O2 and applied bias voltage of 100 V. In case of the fungi, sterilization rate reached over 83 % but difficult to reach over 90 % even 10 min treatment. According to the plasma diagnostics using optical emission spectroscopy, it was found that the reactive oxygen species such as OH groups are critical for sterilization of microorganisms. Although further efforts should be performed, we believe that efficient sterilization could be realized by the simple, quick, and portable APPJ treatment system.

Analysis of Shear Resistance Characteristics in Pile-Soil Interface using Large-Scale Direct Shear Test (대형직접전단시험을 통한 말뚝과 지반 경계면의 전단특성 분석)

  • You, Seung-Kyong;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.3
    • /
    • pp.61-69
    • /
    • 2022
  • In this study, a large-scale direct shear test was performed to evaluate the shear characteristics of the pile-soil interface according to the fines content and confining pressure conditions as a reasonable evaluation method of the pullout resistance performance of pile considering the soil conditions. It was found that the shear stress was greatly generated under the conditions of high normal stress and low fines content. In addition, the maximum shear stress was found to be rather large under the conditions of the same normal stress and fines content, when pile surface had high roughness. The internal friction angle decreased at the pile-soil interface, when the fines content in the ground increased. On the other hand, the cohesion decreased under the condition of high fines content. And the internal friction angle and cohesion were large regardless of the fines content in the model ground, when the roughness of the pile surface was high.

Estimation of Dynamic Material Properties for Fill Dam : I. In-situ Shearwave Velocity Profiles (필댐 제체 재료의 동적 물성치 평가 : I. 현장 전단파 속도 주상도)

  • Kim, Jong-Tae;Kim, Dong-Soo;Park, Heon-Joon;Kwon, Hyek-Kee
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.12
    • /
    • pp.69-85
    • /
    • 2009
  • It is very important to measure reliable dynamic properties of each zone in dam for seismic design. However, the Vs values of core and rock-fill zone are seldom determined by field test. Consequently, seismic design in dam is performed using Vs values assumed or empirically determined. So, it is required that reliable Vs has to be evaluated by in-situ test. In this study, surface wave method, which is nondestructive, was applied to dam to evaluate Vs profiles of core and rock-fill zone in dam. In 6 dams, using SASW and HWAW methods, Vs profiles were evaluated reliably. D/B of Vs profiles of each zone with depth and relationship between confining pressure and Vs profiles of rock-fill zone were constructed including existing results of other dams. The evaluated D/B and proposed relationship were compared with the frequently used empirical method by Sawada and Takahashi.

Plasma-mediated Hydrophobic Coating on a Silicate-based Yellow Phosphor for the Enhancement of Durability (플라즈마 소수성 코팅을 이용한 실리케이트계 황색형광체의 내구성 개선에 관한 연구)

  • Jang, Doo Il;Jo, Jin Oh;Ko, Ranyoung;Lee, Sang Baek;Mok, Young Sun
    • Korean Chemical Engineering Research
    • /
    • v.51 no.2
    • /
    • pp.214-220
    • /
    • 2013
  • Hydrophobic coating on a silicate-based yellow phosphor ($Sr_2SiO_4:Eu^{2+}$) was carried out by using hexamethyldisiloxane (HMDSO) precursor in an atmospheric pressure dielectric barrier discharge plasma reactor, eventually to improve the long-term stability and reliability of the phosphor. The phosphor powder samples were characterized by a scanning electron microscope (SEM), a transmission electron microscope (TEM), a fluorescence spectrophotometer and a contact angle analyzer. After the coating was prepared, the contact angle of the phosphor powder increased to $133.0^{\circ}$ for water and to $140.5^{\circ}$ for glycerol, indicating that a hydrophobic layer was formed on its surface. The phosphor coated with HMDSO exhibited photoluminescence enhancement up to 7.8%. The SEM and TEM images of the phosphor powder revealed that the plasma coating led to a morphological change from grain-like structure to smooth surface with 31~46 nm thick hydrophobic layer. The light emitting diode (3528 1 chip LED) fabricated with the coated phosphor showed a substantial enhancement in the reliability under a special test condition at $85^{\circ}C$ and 85% relative humidity for 1,000 h (85/85 testing). The plasma-mediated method proposed in this work may be applicable to the formation of 3-dimensional coating layer on irregular-shaped phosphor powder, thereby improving the reliability.

The Effect of Additives on the High Current Density Copper Electroplating (고전류밀도에서 첨가제에 따른 구리도급의 표면 특성 연구)

  • Shim, Jin-Yong;Moon, Yun-Sung;Hur, Ki-Su;Koo, Yeon-Soo;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.1
    • /
    • pp.29-33
    • /
    • 2011
  • The current density in copper electroplating is directly related with the productivity and then to increase the productivity, the increase in current density is required. To obtain the high mass flow rate, rotating disk electrode(RDE) was employed. High rotational speed in RDE can increase the mass flow rate and then high speed electroplating was possible using RDE to control mass flow. Two types of cathode were used. One is RDE and another is rotating cylindrical electrode(RCE). A constant-current, constant-voltage and linear sweep voltammetry were applied to investigate current and voltage relationship. The maximum current density without evolution of hydrogen gas was increased with rotational speed. Over 400 rpm, maximum current density was higher than 1000 A/$m^2$. The diffusion coefficients of copper calculated from the slope of the plots are $5.5{\times}10^6\;cm^2\;s^{-1}$ at $25^{\circ}C$ and $10.5{\times}10^6\;cm^2\;s^{-1}$ at $62^{\circ}C$. The stable voltage without evolution of hydrogen gas was -0.05 V(vs Ag/AgCl). Additives were added to prevent dendritic growth on cathode deposits. The surface roughness was analyzed with UV-Vis Spectrophotometer. The reflectance of the copper surface over 600 nm was measured and was related with the surface roughness. As the surface roughness improved, the reflectance was also increased.