• Title/Summary/Keyword: 폴리머모르타르

Search Result 186, Processing Time 0.022 seconds

Mechanical Properties of Cement Mortar with Polymers (폴리머 모르타르의 기계적 특성)

  • 정민철;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.7
    • /
    • pp.745-752
    • /
    • 1994
  • A polymer reinforced grouts using ordinary portland cement mortar and water soluble polymer{polyvinyl alcohol(PVA), styrene-butadiene rubbre(SBR), etylene-vinyl acetate copolymer(EVA)} were made. The mechanical properties of the hardened specimens were investigated through the observation of the microstructure and application of fracture mechanics. When the PVA, SBR and EVA was added with 1.5 wt% to the grouts, the compressive strength were about 54 MPa, 63 MPa and 68 MPa respectively, and the flexural strength was about 11 MPa, 12.8 MPa, and 13.6 MPa respectively, and Young's modulus was about 3.8 GPa, 4.4 GPa and 4.6 GPa respectively, and critical stress intensity was about 0.73 MNm-1.5, 0.85 MNm-1.5 and 0.9 MNm-1.5 respectively. It can be considered that the strength improvement of polymer mortar grouts may be due to the removal of macropores and the increase of various fracture toughness effects, such as grain bridging, frictional interlocking and polymer bridging.

  • PDF

Strength Properties of Polymer-Modified Mortars Using Methylmethacrylate-Ethyl Acrylate Latexes according to Amount of Emulsifier (유화제 첨가량에 따른 MMA/EA 합성 라텍스 폴리머 시멘트 모르타르의 강도특성)

  • 형원길;조영철;김완기;이대수;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.421-424
    • /
    • 2003
  • The purpose of this study is to clarify the effect of the emulsifier ratio on strength properties of the polymer-modified mortars using methylmethacrylate-ethyl acrylate(MMA/EA) latexes, and to obtain basic data necessary to develope appropriate latexes for cement modifiers. Polymer-modified mortars using MMA/EA latexes are prepared with various monomer ratios, and tested for air content, flexural and compressive strengths. From the test results, we knew that the water-cement ratio is decreased and the air content is increased with an increase in the amount of emulsifier. In general, the superior flexural and compressive strengths of polymer-modified mortars using MMA/EA latexes is obtained at a bound MMA content of 60 percent and a emulsifier ratio of 6 percent.

  • PDF

A Study on the Lining of Reinforced Concrete Pipe Using Polymer-Modified Mortar (폴리머 시멘트 모르타르를 이용한 철근콘크리트 흄관 라이닝에 관한 연구)

  • 김영집;김한엽;조영구;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.333-338
    • /
    • 2000
  • At present, reinforced concrete pipe has been widely used as drain pipe. However, many reinforced concrete pipe is exposed at deteriorated environment by the growth of a sulfur-oxidizing bacterium isolated from corroded concrete. The purpose of this study is to evaluate the effects of lining by polymer-modified mortar on the development in durability of reinforced concrete pipe. Polymer-modified mortars ate prepared with various polymer typer as cement modifier and polymer-cement ratio and rested for compressive and flexural strengths, adhesion in tension, acid resistance test, freezing and thawing test, and lining test of product in the field. From the rest results, it is apparent that polymer-modified mortars have good mechanical properties and durability as lining material. In practice, all polymers can be used as lining materials for reinforced concrete pip, and type of polymer, and polymer-cement ratio and curing conditions are controlled for good lining product.

  • PDF

A Study on the Adhesion of Concrete Pipe Lining Using Polymer Mortar (폴리머 모르타르를 이용한 콘크리트관 라이닝의 접착에 관한 연구)

  • 정학용;조영국;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.357-362
    • /
    • 1997
  • The purpose of this study is to evaluate the adhesion of concrete pipe lining using polymer mortar. The polymer mortars with various mix proportions are prepared, and tested for flexural and compressive strengths, adhesion in tension, and the aspects of lining surface and workability are evaluated. Form the test results, it is apparent that the appropriate polymer mortars of lining to concrete pipe can be produced. The flexural and compressive strengths of polymer mortar for lining are affected by type of resin, and aggregates content, and water content at the surface of concrete pipe is important factor for improvement in adhesion of polymer mortar. It is obvious that the economical polymer mortars having an excellent cost performance ration can be produced through this study.

  • PDF

Strength Properties of Polymer-Modified Mortar with High-Range Water- Reducing Agents (고성능 감수제를 첨가한 폴리머 시멘트 모르타르의 강도 특성)

  • 이윤수;주명기
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.811-815
    • /
    • 2003
  • The effects of high-range water-reducing agent (WRA) content and polymer-cement ratio on the strength properties of autoclaved SBR-modified mortars with WRA are examined. As a result, the flexural strength of the autoclaved SBR-modified mortars with WRAs tends to increase with increasing WRA content and polymer-cement ratio, and reaches a maximum at a WRA content of 2.0%. The compressive strength of the autoclaved SBR-modified mortars with WRAs is inclined to increase with increasing WRA content and polymer-cement ratio, and reaches a maximum at a WRA content of 2.0% and a polymer-cement ratio of 10%. From the test results, the addition of the WRAs is effective for improving strength properties of the autoclaved SBR-modified mortars.

  • PDF

Long-term Strength Improvement of Epoxy-Modified Mortars with Steam Curing (증기양생에 의한 에폭시수지 혼입 PMM의 장기강도 발현)

  • Lee, Jae-Hwa;Kim, Wan-Ki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.263-264
    • /
    • 2012
  • The purpose of present study is to examine the long-term strength improvement of hardener-free epoxy-modified mortars with steam curing. As a result, strength improvement of hardener-free epoxy-modified mortars is markedly improved with increasing of air-dry curing period. This is improved by markedly increase the degree of hardening of the hardener-free epoxy resin in the epoxy-modified mortars with additional air-dry curing period.

  • PDF

Early Strength Properties of EVA Polymer Powder-Modified Mortars with Quick Setting Agent (급결제를 이용한 EVA 분말수지 혼입 폴리머 시멘트 모르타르의 초기강도 특성)

  • Jo, Young-Chul;Choi, Nak-Woon;Lee, Chol-Woong;Yang, Suk-Woo;So, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.309-312
    • /
    • 2005
  • Admixture compounds for shortening setting time and accelerating early strength development of EVA polymer powder-modified mortars were made by mixing various quick setting agents. As a result, the quick setting agents contribute to strength development of the mortars in the early curing age of 168h or less. In the viewpoint of early strength development of EVA polymer powder-modified mortars, an quick setting agent content of 20$\%$ is recommended. Early strength of EVA polymer powder-modified mortars expresses the excellent strength with 5$\%$, 10$\%$ of rates of polymer mixing. The rate of polymer mixing was able to be adjusted and flexural strength which is a predeterminded initial strength was also able to satisfy 3MPa(s).

  • PDF

Evaluation for Performance According to Curing Method of Polymer- Modified Mortars (폴리머 시멘트 모르타르의 양생방법에 따른 물성 평가)

  • Park, Hun-Il;Ryu, Byung-Cheoll;Oh, Sang-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.273-276
    • /
    • 2005
  • Polymer-modified mortar was developed for improving the performance of modified mortar which is mixed with polymer, and it is used for protecting and repairing materials of building because of their excellent performance to improve characteristics which are compressive strength, flexural strength, and adhesive strength. However, the performances of the polymer-modified mortars are highly affected by materials, which are polymer, mortar, and aggregates, and conditions which are curing environment and testing method. Furthermore, dry curing method after hydrated curing has been recommended to make strong polymer film for the best curing method to make excellent characteristics. In this report, We investigated the co-relation between curing methods and the characteristics, which are compressive strength, flexural strength, and adhesive strength for the polymer-modified mortars that are used in the domestic area.

  • PDF

The Maintenance Methods of Concrete Deterioration caused by Fire Attack (화재피해를 입은 콘크리트 구조물의 유지관리방안)

  • Kwon, Young-Jin;Yoon, Ung-Gi;Koo, In-Hyeok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.236-237
    • /
    • 2015
  • Concrete is the one of the most widely used in every country as a structural materials. On the other hand, a lot of fire incident has been occurred all over the world. But maintenance methods such as inspection and diagnostic methods, design methods, quality control methods for the purpose of improving the performance of concrete structures damaged by fire has made in its own way. Therefore, the purpose of this proposal of new working item is is to ensure the safety of the concrete structures damaged by fire in the field of assessment of damage, design, repair methods and so on through the International Organization for Standardization.

  • PDF

Strength Properties of High-Strength Polymer Cement Mortars Containing VAE Powder (VAE계 분말을 혼입한 고강도 폴리머 시멘트 모르타르의 강도 특성)

  • Choi, Jung-Gu;Lee, Gun-Cheol;Lee, Gun-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.19-20
    • /
    • 2014
  • This study is to find out the tensile strength and bonding strength of VAE powder as a preliminary study for the application of the powder to the high strength concrete. The result of the study showed that the compressive strength decreases when more polymers is put into the concrete. On the other hand, it showed that the tensile strength and the bonding strength get improved when the more polymers are put into the concrete. Especially in case of the mixture for high strength concrete, it was found out that more strength is produced than the ordinary concrete.

  • PDF