• Title/Summary/Keyword: 폭풍 해일

Search Result 150, Processing Time 0.031 seconds

Numerical Simulations of Storm Surge/Coastal Flooding at Mokpo Coastal Zone by MIKE21 Model (MIKE 21 모형을 이용한 목포해역 해일/범람모의)

  • Moon, Seung-Rok;Park, Seon-Jung;Kang, Ju-Whan;Yoon, Jong-Tae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.4
    • /
    • pp.348-359
    • /
    • 2006
  • The city of Mokpo suffers lowland inundation damages by sea water flooding even without harsh weather like a typhoon, due to the low level urban infrastructure facilities, oceanic environmental changes by constructions of seadike/seawall and sea level rise caused by global warming. This study performs constructing the simulation system which employs the MIKE21 software. And the system is applied to several typhoon- induced surges which had resulted in inundation at Mokpo. Virtual situation of flooding is simulated in case 59 cm of surge height, which had been occurred actually by RUSA(0215), coincides with Approx. H.H.W. Then the water level of 545 cm corresponds to the extreme high water level(544 cm) for 10 year return period after the construction of Geumho seawall. The results show rapid and broad inundation at Inner-Port, requiring additional preparations for flood protections.

The Vulnerability of the Reclaimed Seashore Land Attendant Upon Storm Surge/Coastal Inundation (해일/범람에 따른 해안 매립지의 취약성)

  • Kang, Tae-Soon;Moon, Seung-Rok;Nam, Soo-Yong;Shim, Jae-Seol
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.68-75
    • /
    • 2010
  • Recently, the intensity and frequency of typhoons have been on the increase due to unusual weather phenomena and climate change. In particular, on September 13, 2003, typhoon MAEMI (0314) caused heavy damage in the provinces of Busan and Gyongnam, but also provided an opportunity to perform a variety of studies on storm surge. According to investigation reports on the damage resulting from typhoon MAEMI, the areas where coastal inundation occurred were located in reclaimed land under coastal development. In this study, through an image data analysis of historic and present day typhoons affecting Masan, we found that the inundation damage areas corresponded to reclaimed lands. Therefore, using the area around Busan, including the southeastern coast of Korea where typhoons lead to an increased storm surge risk, we performed a storm surge/inundation simulation, and examined the inundation effect on reclaimed land due to the intensified typhoons predicted for the future by climate change scenarios.

The change of maximum surge height according to coastal geometry and typhoon characters (연안지형과 태풍의 특성에 따른 최대폭풍해일고 변화)

  • Sangyoung Son;Xiaojuan Qian
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.124-124
    • /
    • 2023
  • 본 연구에서는 태풍의 이동속도(TS), 상륙각도(LA) 및 연안 지형이 최대 해일고(MSH)에 미치는 복합적인 효과를 분석하기 위해, 이상적인 시나리오와 실제 규모의 사상에 대한 수치모의를 수행였으며. 이를 통해 태풍 진행시 연안을 따라 분포하는 최대 해일고의 일반적 특성을 도출하고자 한다. Delft3D-FM의 2차원 모델을 사용하여 수치모의를 진행하였으며, 모델 도메인은 태풍의 상륙 지점을 연안 중심에 위치시켜고 16km에서 1km까지 다중 해상도 격자로 구성하였다. 가상의 태풍은 다양한 TS와 LA 조건에 따라 생성되었고, TS는 기존의 태풍 사상들의 특성을 통계적으로 분석하여 유의한 범위에서 변화하도록 설정하는 반면, LA의 경우 0도에서 180도까지 15도 간격으로 변화시켰다. 또한, 연안형상과 해저 지형도 다양한 형태를 고려하였는데 해저 지형의 경우일정수심 혹은 여러 가지 대륙붕 폭을 지닌 지형, 다중 경사 지형 등이 고려되었다. 연안형상의 경우 형태 비율로 특징 지어지는 개방 연안과 만이 고려되었다. 총 763개의 이상적인 시나리오가 모의되었으며 그 결과 연안을 따라 MSH 분포를 분석하였다. 이상적인 시나리오에서 개발된 효과의 적용성을 검증하기 위해 다양한 TS와 LA 조건에서 역사적인 태풍 매미를 기반으로 현실적인 규모의 시나리오 모의가 실시되었다. 그 결과 빠르게 이동하는 TS가 개방 연안을 따라 분포하는MSH를 증폭시킨다는 사실을 재확인하는 등, 연안지형, 태풍의 특성에 따른 최대 푹풍해이고 변화에 대한 다양한 결과를 얻을 수 있었다.

  • PDF

Applicability of Inundation Simulation with the Coupled Tide-Surge Model (조석-해일 결합모형의 범람 적용성)

  • Park, Seon-Jung;Kang, Ju-Whan;Yoon, Jong-Tae;Jung, Tae-Sung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.4
    • /
    • pp.270-278
    • /
    • 2010
  • Applicability of the MIKE21 model as a real time coupled tide-surge model had been examined at the previous study. In this study, another applicability of the model as an inundation model is also examined. Prior to real cases, effect of artificial structures on the inundation is analyzed. The results show that inundation depth is not altered, while inundation area is lessened as a result of decreased inundation speed. Comparative study between the coupled model and an uncoupled storm surge model is also carried out at the Masan coastal zone, which shows the coupled model is considered to be plausible at the time to maximum inundation, while both models show similar results at the inundation area and inundation depth.

Deterministic Estimation of Typhoon-Induced Surges and Inundation on Korean Coastal Regions (국내 연안 태풍 해일의 결정론적 추정 및 침수 영역 예측)

  • Ku, Hyeyun;Maeng, Jun Ho;Cho, Kwangwoo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • This research mainly focuses on examining the applicability of the deterministic model SLOSH (Sea, Lake and Overland Surges from Hurricanes) on Seas covering South Korea. Also, a simple bathtub approach which estimates coastal inundation area is validated as a first step of estimating effects of sea-level rise on the coastal cities of South Korea according to climate change. Firstly, the typhoon-induced surges are obtained from the model SLOSH by adopting historical typhoons MAEMI (0314) and BOLAVEN (1215). The results are compared to observational, typhoon-induced surge heights at several tidal stations. The coastal inundation area is estimated by comparing the maximum envelop of waves (MEOW) and the elevation of coastal land. It reproduces well the inundation area. It can be seen that this research gained applicability for estimating further potential coastal inundation with climate changes.

Inundation Simulation on a Vertical Dock Using Finite Element Storm Surge Model (유한요소 폭풍해일 모형을 이용한 직립안벽에 대한 범람모의)

  • Suh, Seung-Won;Lee, Hwa-Young
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.4
    • /
    • pp.235-246
    • /
    • 2012
  • Typhoon induced surge simulations are done to make an establishment of coastal disaster prevention plan. To apply efficient run-up and overtopping on vertical harbor docks, in which prevailing wet-dry scheme cannot be satisfied due to infinite steepness, an imaginary internal barrier concept introduced and analyzed. Before real application on the Mokpo harbor area, feasibility tests are done on an idealized simple geometry and as a result it is found that the moderate width of the barrier might be 1 m. The threshold value of the minimum wet depth $H_{min}$ for land area, which behaves sensitive role in inundation area and depth, depends on grid size. However it is revealed that 0.01 m is adequate value in this fine finite element with 10 m spacing. A hypothetical typhoon of 100 years return period in central pressure and maximum velocity is generated based on historical tracks. Simulation of possible inundation on Mokpo area is performed with asymmetrical vortex of hypothetical typhoon and wave coupling. Model results show general agreement in pattern compared to other's prediction, however possibility of inundation enlargement is expected in harbor area.

Ratemaking based on the claim size distribution (손해액 분포 결정에 따른 보험료 산출)

  • 차재형;이재원
    • The Korean Journal of Applied Statistics
    • /
    • v.13 no.2
    • /
    • pp.247-263
    • /
    • 2000
  • Natural catastrophe is defined as all damages caused by natural phenomenon such as typhoon, flood, inundation, windstorm, tidal wave, tremendous snowfall, drought,earthquake and to on It is classified at a huge hazard because of the large severity ofdamage In Korea, Fire Insurance policy includet the coverage clauses and rates of naturalcatastrophe like'Flood , Inundation Coverage Clause'and'Earthquake Coverage Clause'These clauses and rates do not reflect accurate risk of flood, inundation and earthauakein Korea. because those are tariff from other countries Hence, we determine the claimsize distributions and the rates for typhoon coverage and flood-inundation coverage byusing statistical methods which have not been used so far in Korean non-life insurance,and calculate appropriate premium for policyholder's interest

Composite technique development of rain rate by using COMS and microwave satellite (통신해양기상위성 및 마이크로웨이브자료를 이용한 강수량합성기술개발.활용)

  • Suh, Ae-Sook;Park, Jong-Seo;Kim, Do-Hyung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.259-263
    • /
    • 2008
  • 최근 기후변화로 인해 집중호우, 태풍, 폭설 등 악기상 발생이 빈번해지고 있으며, 특히 태풍은 단일 기상현상 가운데 가장 강력하며, 태풍으로 인하여 집중호우 폭풍 및 해일 등 부차적 악기상이 함께 발생하여 인명 및 경제 사회적인 피해 또한 막대하지만, 태풍으로 인한 강수량 측정은 다른 현상에 비해 정확한 측정이 어렵다. 이것은 태풍이 발생에서 소멸까지 일생의 대부분을 해상에서 보내, 육상 관측으로는 정확한 강수량 측정이 어렵기 때문이다. 그러나 위성자료를 활용하면 해상에서의 태풍 구름에 의한 강수분포를 추정할 수 있으며, 특히 구름을 투과하여 아래 내부구조 파악이 가능한 마이크로파 영역의 적외복사에너지를 이용하면 좀더 정확한 강수량 자료를 얻을 수 있을 것이다. 그러나 관측영역 확대를 위해서는 가능한 마이크로파위성자료를 합성처리하여 활용하는 것이 효과를 얻을 수 있을 것이다. 본 연구에서는 현재 기상청에서 수신하고 있는 Aqua/AMSR-E, SSM/I, TMI, QuilSCAT 등에서 산출되는 강수량을 상호 검증기법을 이용하여 합성처리 하였다. 위성자료마다 정확도와 해상도가 다른 것에 대해서는 높은 정확도에 가중치를 주고, 고해상도 자료에 맞추어 픽셀 크기를 맞추었다. 사용한 자료는 2005년$\sim$2007년 간 발생한 태풍 중에서 우리나라에 영향을 준 나비, 나리, 에위니아 등 3개 사례이며, 검증은 자동관측자료(AWS : Automatic Weather Station)자료와 일본 AWS자료(AMEDAS : Automatic Measurement Data Aquisition System) 및 미해군 연구소 발표자료를 이용하여, 시계열오차 분석 및 산포도를 분석하였다.

  • PDF

A Warning and Forecasting System for Storm Surge in Masan Bay (마산만 국지해일 예경보 모의 시스템 구축)

  • Han, Sung-Dae;Lee, Jung-Lyul
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.131-138
    • /
    • 2009
  • In this paper, a dynamic warning system to forecast inland flooding associated with typhoons and storms is described. The system is used operationally during the typhoon season to anticipate the potential impact such as inland flooding on the coastal zone of interest. The system has been developed for the use of the public and emergency management officials. Simple typhoon models for quick prediction of wind fields are implemented in a user-friendly way by using a Graphical User Interface (GUI) of MATLAB. The main program for simulating tides, depth-averaged tidal currents, wind-driven surges and currents was also vectorized for the fast performance by MATLAB. By pushing buttons and clicking the typhoon paths, the user is able to obtain real-time water level fluctuation of specific points and the flooding zone. This system would guide local officials to make systematic use of threat information possible. However, the model results are sensitive to typhoon path, and it is yet difficult to provide accurate information to local emergency managers.

Estimation of Frequency of Storm Surge Heights on the West and South Coasts of Korea Using Synthesized Typhoons (확률론적 합성태풍을 이용한 서남해안 빈도 해일고 산정)

  • Kim, HyeonJeong;Suh, SeungWon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.5
    • /
    • pp.241-252
    • /
    • 2019
  • To choose appropriate countermeasures against potential coastal disaster damages caused by a storm surge, it is necessary to estimate the frequency of storm surge heights estimation. As the coastal populations size in the past was small, the tropical cyclone risk model (TCRM) was used to generate 176,689 synthetic typhoons. In simulation, historical paths and central pressures were incorporated as a probability density function. Moreover, to consider the typhoon characteristics that resurfaced or decayed after landfall on the southeast coast of China, incorporated the shift angle of the historical typhoon as a function of the probability density function and applied it as a damping parameter. Thus, the passing rate of typhoons moving from the southeast coast of China to the south coast has improved. The characteristics of the typhoon were analyzed from the historical typhoon information using correlations between the central pressure, maximum wind speed ($V_{max}$) and the maximum wind speed radius ($R_{max}$); it was then applied to synthetic typhoons. The storm surges were calculated using the ADCIRC model, considering both tidal and synthetic typhoons using automated Perl script. The storm surges caused by the probabilistic synthetic typhoons appear similar to the recorded storm surges, therefore this proposed scheme can be applied to the storm surge simulations. Based on these results, extreme values were calculated using the Generalized Extreme Value (GEV) method, and as a result, the 100-year return period storm surge was found to be satisfactory compared with the calculated empirical simulation value. The method proposed in this study can be applied to estimate the frequency of storm surges in coastal areas.