• Title/Summary/Keyword: 포텐셜 지도

Search Result 109, Processing Time 0.025 seconds

Synthesis of Iron Nanopowder from FeCl3 Solution by Chemical Reduction Method for Recycling of Spent Neodymium Magnet (네오디뮴 폐자석 재활용을 위한 화학환원법을 이용한 철 나노 분말 제조)

  • Ha, Yonghwang;Gang, Ryun-Ji;Choi, Seung-Hoon;Yoon, Ho-Sung;Ahn, Jong-Gwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.6187-6195
    • /
    • 2012
  • Recycling process of iron should be developed for efficient recovery of neodymium(Nd), rare metal, from acid-leaching solution of neodymium magnet. In this study, $FeCl_3$ solution as iron source was used for synthesis of iron nanoparticle with the condition of various factors, etc, reductant, surfactant. $Na_4O_7P_2$ and polyvinylpyrrolidone(PVP) as surfactants, $NaBH_4$ as reductant, and palladium chloride($PdCl_2$) as a nucleation seed were used. Iron powder was analyzed with instruments of XRD, SEM and PSA for measuring shape and size. Iron nanoparticles were made at the ratio of 1 : 5(Fe (III) : $NaBH_4$) after 30 min of reduction time. Size and shape of iron particles synthesized were round-form and 50 nm ~ 100 nm size. Zeta-potential of iron at the 100 mg/L of $Na_4O_7P_2$ was negative value, which is good for dispersion of metal particle. When $Na_4O_7P_2$(100 mg/L), PVP($FeCl_3$ : PVP = 1 : 4, w/w) and Pd($FeCl_3$ : $PdCl_2$ = 1 : 0.001, w/w) were used, iron nanoparticles which are round-shape, well-dispersed, near 100 nm-sized can be made.

Characteristic Analysis of Permanent Magnet Linear Generator by using Space Harmonic Method (공간고조파법을 이용한 영구자석 선형 발전기의 특성 해석)

  • Seo, Seong-Won;Choi, Jang-Young;Kim, Il-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.688-695
    • /
    • 2017
  • This paper deals with characteristics analysis of a permanent magnet (PM) linear generator using analytical methods for wave energy harvesting. The wave energy is carried out from the movement of a yo-yo system. A linear generator using permanent magnets to generate a magnetic force itself does not require a separate power supply and has the advantage of simple maintenance. In addition to the use of a rare earth, a permanent magnet having a high-energy density can be miniaturized and lightweight, and can obtain high energy-conversion efficiency. We derived magnetic field solutions produced by the permanent magnet and armature reaction based on 2D polar coordinates and magnetic vector potential. Induced voltage is obtained via arbitrary sinusoidal input. In addition, electrical parameters are obtained, such as back-EMF constant, resistance, and self- and mutual-winding inductances. The space harmonic method used in this paper is confirmed by comparing it with finite element method (FEM) results. These facilitate the characterization of the PM-type linear generator and provide a basis for comparative studies, design optimization, and machine dynamic modeling.

Research for robot kidnap problem in the indoor of utilizing external image information and the absolute spatial coordinates (실내 공간에서 이동 로봇의 납치 문제 해결을 위한 외부 영상 정보 및 절대 공간 좌표 활용 연구)

  • Jeon, Young-Pil;Park, Jong-Ho;Lim, Shin-Teak;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2123-2130
    • /
    • 2015
  • For such automatic monitoring robot or a robot cleaner that is utilized indoors, if it deviates from someone by replacement or, or of a mobile robot such as collisions with unexpected object direction or planned path, based on the planned path There is a need to come back to, it is necessary to tough self-position estimation ability of mobile robot in this, which is also associated with resolution of the kidnap problem of conventional mobile robot. In this study, the case of a mobile robot, operates indoors, you want to take advantage of the low cost of the robot. Therefore, in this paper, by using the acquisition device to an external image information such as the CCTV which is installed in a room, it acquires the environment image and take advantage of marker recognition of the mobile robot at the same time and converted it absolutely spatial coordinates it is, we are trying to solve the self-position estimation of the mobile robot in the room and kidnap problem and actual implementation methods potential field to try utilizing robotic systems. Thus, by implementing the method proposed in this study to the actual robot system, and is promoting the relevant experiment was to verify the results.

Comparative Studies of Methods for Continuation and Derivatives of Potential Fields (포텐셜장(場)의 상하향연속(上下向連續) 및 미분법(微分法)에 대(對)한 비교연구(比較硏究))

  • Kwon, Byung Doo
    • Economic and Environmental Geology
    • /
    • v.14 no.2
    • /
    • pp.93-102
    • /
    • 1981
  • Studies of model potential fields continued upward and downward show differences depending on the method of continuation. Beginning with a magnetic field computed over a buried vertical cylinder, the field was continued to various levels by a method introduced by Henderson (Lagrangian interpolation) and by a spectral method (frequency domain analysis). Resultant fields show (1) no significant differences in upward continued values, (2) in downward continuation, accurate values are obtained with the spectral method over the central part of the anomaly, and (3) accurate values are obtained with Henderson's method on the flanks of the anomaly, while oscillations usually characterize the spectral method in this region. Essentially the same observations are made for derivative calculations. Field oscillations are empirically predicted at levels continued to approximately two-thirds of the depth of the source. Our spectral computer program output yields marked oscillations at one-half of the depth of the source. Henderson's method shows no oscillations at this depth and only minor oscillations at the top of the body (some negative values appear on the flanks of the anomaly). The Henderson output is a smooth field even if continued below the top of the body. These results suggest that the presence of oscillations cannot be used to identify the top of a buried source without careful consideration of the method used to continue the field. Use of the derivative to outline and isolate anomalies must similarly include consideration of the method of calculation.

  • PDF

Influence on Short Channel Effects by Tunneling for Nano structure Double Gate MOSFET (나노구조 이중게이트 MOSFET에서 터널링이 단채널효과에 미치는 영향)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.3
    • /
    • pp.479-485
    • /
    • 2006
  • The double gate(DG) MOSFET is a promising candidate to further extend the CMOS scaling and provide better control of short channel effect(SCE). DGMOSFETs, having ultra thin undoped Si channel for SCEs control, ale being validated for sub-20nm scaling. A novel analytical transport model for the subthreshold mode of DGMOSFETs is proposed in this paper. The model enables analysis of short channel effect such as the subthreshold swing(SS), the threshold voltage roil-off$({\Delta}V_{th})$ and the drain induced barrier lowering(DIBL). The proposed model includes the effects of thermionic emission and quantum tunneling of carriers through the source-drain barrier. An approximative solution of the 2D Poisson equation is used for the distribution of electric potential, and Wentzel-Kramers-Brillouin approximation is used for the tunneling probability. The new model is used to investigate the subthreshold characteristics of a double gate MOSFET having the gate length in the nanometer range $(5-20{\sim}nm)$ with ultra thin gate oxide and channel thickness. The model is verified by comparing the subthreshold swing and the threshold voltage roll-off with 2D numerical simulations. The proposed model is used to design contours for gate length, channel thickness, and gate oxide thickness.

Improved breakdown characteristics of Ga2O3 Schottky barrier diode using floating metal guard ring structure (플로팅 금속 가드링 구조를 이용한 Ga2O3 쇼트키 장벽 다이오드의 항복 특성 개선 연구)

  • Choi, June-Heang;Cha, Ho-Young
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.193-199
    • /
    • 2019
  • In this study, we have proposed a floating metal guard ring structure based on TCAD simulation in order to enhance the breakdown voltage characteristics of gallium oxide ($Ga_2O_3$) vertical high voltage switching Schottky barrier diode. Unlike conventional guard ring structures, the floating metal guard rings do not require an ion implantation process. The locally enhanced high electric field at the anode corner was successfully suppressed by the metal guard rings, resulting in breakdown voltage enhancement. The number of guard rings and their width and spacing were varied for structural optimization during which the current-voltage characteristics and internal electric field and potential distributions were carefully investigated. For an n-type drift layer with a doping concentration of $5{\times}10^{16}cm^{-3}$ and a thickness of $5{\mu}m$, the optimum guard ring structure had 5 guard rings with an individual ring width of $1.5{\mu}m$ and a spacing of $0.2{\mu}m$ between rings. The breakdown voltage was increased from 940 V to 2000 V without degradation of on-resistance by employing the optimum guard ring structure. The proposed floating metal guard ring structure can improve the device performance without requiring an additional fabrication step.

Performance Assessment of Navigation Seakeeping for Coastal Liquified-Natural-Gas Bunkering Ship (연안선박용 LNG 벙커링 전용선박의 내항성능 평가에 대한 연구)

  • Yi, Minah;Park, Jun-Bum;Lee, Chang-Hee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.7
    • /
    • pp.904-914
    • /
    • 2020
  • Through the Ministry of Trade, Industry, and Energy, South Korea is trying to support the "Building Project for Liquified Natural Gas (LNG) Bunkering Ship," centered on the Korea Gas Corporation, while the Ministry of Maritime Af airs and Fisheries is pushing to construct an LNG bunkering terminal at Busan New Port. LNG bunkering ships are essential for supplying LNG fuel from the terminal to the ships, resulting in the need for safety operation procedures. Therefore, in this study, the stability of a coastal LNG bunkering ship operating from Busan New Port to the anchorage in Busan Port was assessed to investigate the need for operational procedures for coastal LNG bunkering ships. Seakeeping analysis of the LNG bunkering ship was performed for each significant wave height by combining the response amplitude operator from the ship motion analysis under the potential flow theory with the actual observed sea data for five years and Texel, Marsen, and Arsloe (TMA) spectrum suitable for the Busan coast. The results showed that the roll and horizontal acceleration were the main risks that affected the navigation seakeeping performance above a significance wave height of 2 m. The operational periods of the LNG bunkering ship ranged from 83.3% to 99.9% of the total observation period.

On the Improvement of Precision in Gravity Surveying and Correction, and a Dense Bouguer Anomaly in and Around the Korean Peninsula (한반도 일원의 중력측정 및 보정의 정밀화와 고밀도 부우게이상)

  • Shin, Young-Hong;Yang, Chul-Soo;Ok, Soo-Suk;Choi, Kwang-Sun
    • Journal of the Korean earth science society
    • /
    • v.24 no.3
    • /
    • pp.205-215
    • /
    • 2003
  • A precise and dense Bouguer anomaly is one of the most important data to improve the knowledge of our environment in the aspect of geophysics and physical geodesy. Besides the precise absolute gravity station net, we should consider two parts; one is to improve the precision in gravity measurement and correction of it, and the other is the density of measurement both in number and distribution. For the precise positioning, we have tested how we could use the GPS properly in gravity measurement, and deduced that the GPS measurement for 5 minutes would be effective when we used DGPS with two geodetic GPS receivers and the baseline was shorter than 40km. In this case we should use a precise geoid model such as PNU95. By applying this method, we are able to reduce the cost, time, and number of surveyors, furthermore we also get the benefit of improving in quality. Two kind of computer programs were developed to correct crossover errors and to calculate terrain effects more precisely. The repeated measurements on the same stations in gravity surveying are helpful not only to correct the drifts of spring but also to approach the results statistically by applying network adjustment. So we can find out the blunders of various causes easily and also able to estimate the quality of the measurements. The recent developments in computer technology, digital elevation data, and precise positioning also stimulate us to improve the Bouguer anomaly by more precise terrain correction. The gravity data of various sources, such as land gravity data (by Choi, NGI, etc.), marine gravity data (by NORI), Bouguer anomaly map of North Korea, Japanese gravity data, altimetry satellite data, and EGM96 geopotential model, were collected and processed to get a precise and dense Bouguer anomaly in and around the Korean Peninsula.

Comparison of Disk Tension Infiltrometer and van Genuchten-Mualem Model on Estimation of Unsaturated Hydraulic Conductivity (장력 침투계(Disk Tension Infiltrometer)와 van Genuchten-Mualem 모형 적용에 따른 불포화수리 전도도의 비교 해석)

  • Hur, Seung-Oh;Jung, Kang-Ho;Park, Chan-Won;Ha, Sang-Keun;Kim, Geong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.5
    • /
    • pp.259-267
    • /
    • 2006
  • Hydraulic conductivity is the rate of water flux on hydraulic gradient. The van Genuchten Mualem (VGM) model is frequently used for describing unsaturated state of soils, that is composed with the function of soil water potential and soil water content and requests various parameters. This study is to get the value of VGM parameters used Rosetta computer program based on neural network analysis method and to calculate VGM parameters. VGM parameters included Ko(effective saturated hydraulic conductivity), ${\theta}r$(residual soil water content), ${\theta}s$(saturated soil water content), L, n and m. The unsaturated hydraulic conductivity at 10 kPa was calculated by using Rosetta program. Unsaturated hydraulic conductivities of 17 soil series at 1, 3, 5, 7 kPa were also obtained by applying saturated hydraulic conductivity by disk tension infiltrometer based on Gardner and Wooding's equation. Water flow at the water potential of 3 kPa was very low except Namgye, Hagog, Baegsan, Sangju, Seogcheon, Yesan soil series. Unsaturated hydraulic conductivity at 1 kPa showed the highest value for Samgag soil series and was in order of Yesan, Hwabong, Hagog and Baegsan soil series. Those of Gacheon, Seocheon and Ugog soil series were very low. When the value by VGM was compared with the value by disc tension infiltrometer, there was a tendency with exponential function to soils without gravel but there was no tendency to soils including gravel. Conclusively, it would be limited that VGM model for unsaturated hydraulic conductivity analysis applies to Korean agricultural land including gravel and having steep slope, shallow soil depth.