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Comparative Studies of Methods for Continuation

and Derivatives of Potential Fields

Byung Doo Kwon

Abstract: Studies of model potential ficlds continued upward and downward show differences depending
on the method of continuation. Beginning with a magnetic field computed over a buried vertical cylinder,
the field was continued to various levels by a method introduced by Henderson (Lagrangian interpolation)
and by a spectral method (frequency domain analysis). Resultant fields show (1) no significant differences
in upward continued values, (2) in downward continuation, accurate values are obtained with the spectral
method over the central part of the anomaly, and (3) accurate values are obtained with Henderson’s method
on the flanks of the anomaly, while oscillations usually characterize the spectral method in this region.
Essentially the same observations are made for derivative calculations.

Field oscillations are empirically predicted at levels continued to approximately two-thirds of the depth of
the source. Our spectral computer program output yields marked oscillations at one-half of the depth of
the source. Henderson’s method shows no oscillations at this depth and only minor oscillations at the top
of the body (some negative values appear on the flanks of the anomaly). The Henderson output is a smooth
field even if continued below the top of the body. These results suggest that the presence of oscillations
cannot be used to identify the top of a buried source without careful consideration of the method used to

continue the field. Use of the derivative to outline and isolate anomalies must s;mxlar]y include considera-

tion of the method of calculation.

1. Introduction

In principle, a potential field measured at the
earth’s surface can be used to compute theoretical
fields at different levels, above or below the
observed field. Upward continuation is sometimes
used to suppress local anomalies originating
in the near surface. Conversely, downward
continuation increases the resolution of weak
anomalies. In a similar way, the first and second
vertical derivatives of a potential field also can
accentuate and isolate‘weak anomalies originating
from shallow sources. Various methods of com-
puting continued fields and their dervatives are
summarized in a standard textbook by Grant and
West (1965).

Successful continuation of gravity and magnetic

fields is based on the assumption that Laplace’s
equation is not violated. That is, the continued
field must be above the disturbing body (mass
or magnetized material). If continuation is
carried to depths below or near the top of the
source, the field will begin to oscillate. Roy(1967)
has suggested the oscillation could be a criterion
of depth. An important aspect of this study is
and evaluation of the behavior of oscillations as
the field is continued downward by two different
methods: (a) by Lagrangian extrapolation in
the space domain as suggested by Henderson(1960)
and, (b) by multiplication in the spectral domain
following an algorithm by Argawal(1968).

The Henderson and spectral methods are the
most popular approaches in computing the

derivatives and continued fields of gravity and
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magnetic data. To date no study has been done
empirically comparing the two methods, although
they differ significantly, A comparison of these
two numerical methods and the reliability of
their calculations is the prime purpose of this
study.

2. Theory
Henderson’s Methed: Upward continuation can

be calculated from the integral formula cf the

classic solution of the Dirichlet problem for a

half space
~ madd(r)rd
dg(-ma)=[ TR )

where m is an integer, a is the grid interval used
to digitize the surface data (Fig. 1),
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equivalent determinantal form (n=5),
where [V]
obtained by deleting the first two rows and

is the Vandermonde determinant

columns of the above determinant.

Since only the first row of the determinant
involves the variable Z, the first and second
vertical derivatives are obtained by successively
differentiating the first row. Both first and second
derivatives have the general form of equation (4)
with appfopriate coefficients D(r;, k).
Spectral Method: Discretly sampled potential
field data at any elevation Z, canbe represented
by a double Fourier series(2)

4¢ (2,9, %) =5 zexp{zfz,/m Z )

: <A,,,cosZ7z:mL + B, sm27zm;)

. <C,, cos 275n%y+D,, sin 2””%)

y

is the average value of 4¢ on circles of radius r
about the point of calculation. Henderson(1960)
calculated upward continued field values, A¢(-ma),
and then used these values to extrapolate 4¢ down-
ward by the use of the Lagrange interpolation
formula

7Y 0 (—1)"Z(Z+a) (Z+2a)---(Z+ma)
A¢(Z)—m§] a"(Z-f—m,a) (n—m)'m!

- A¢(—ma) 3

Based on empirical studies, he used n=5 as an

optimum choice for computation of 4¢ at a
depth of k grid units below the surface. The

general formula is
10
A= 21 4¢(r)) D(r; k) @

where D(;, k) is a fixed set of coefficients.

Formula (3) can be rewritten in the following

(Z]a)? (—Z/a)®
0 L 0
1 - 1 5)
22 . . 25
Bk

where L;, L, are the fundamental wavelengths
in the x and y directions and Ay, By, Cpy and D,
are the coefficients in the Fourier series expansion.
For an equally spaced square map which contains
M grid values along x and y axis, equation 6 can

be expressed in a more compact form,
M-1M-1 ~
A¢(z,y,2) =25 X F e/ wisre
m=0 n=0

.Cos_ 2nx cos 27wy
sin” " “sin” L )

The spectral analysis method involves using the
Fast Fourier Transform (FFT)(3) to obtain the
coefficients of the map, F,,,, and them multiplying
these complex numbers l?y the factor.

Z
@szf,ﬁ

)

where+Z yields downward continuation and -Z
is upward continuation. Computation of the
vertical derivatives of k,, order is obtained by
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Table 1. True and computed values of the magnetic
field on the axis of a vertical cylinder(see
Fig. 1). Computed values from methods of
Henderson (1960) and Argawal (1968): true
values from Equation (9).

Computed values
Depth | True and % Error
z Values Henderson Spectral
-5 16 17 ©6%) 19 (18%)
—4 20 21 5% 22 (10%)
-3 26 26 (0% 28 0%
-2 34 35 %) 36 6%
-1 49 49 0% 49 ©%)
0 71 71 71
1 115 109 (5% 112 (-2%)
2 198 175 (-12%) 192 (3%)
3 378 285 (-25%) *

* QOscillatory values—not considered meaningful.

multiplying the coefficients at each level by
[ZTE v mz-;-nz] ¥, The final computation involves

transforming the frequency data back to the
space domain by inverse Fourier Transform
Equation (7).

Convergence of equation 7 depends on the
multiplying factor of equation (8). Unless the
coefficients F,,,[obtained from dg(x,y)] attenuates
more rapidly than the exponential term of equation
(8), spectral downward continuation is not valied.
Therefore, Ady(x,y) should be a smooth function
whose Fourier spectrum attenuates with the
shorter ‘“‘wavelength” more rapidly than the
exponential term rises. In ordinary applications
a high-cut filter can suppress the near-surface
(short wavelengths) contribution of the residual
potential field. In this study, the fields were
generated from a model and no problems of
noise are anticipated.

3. Program Development

Method: The continuation and
derivative program, as developed by Rudman
and Blakely (1976), closely follows the algorithm

Henderson’s

of Henderson (1960) and is entirely in the space
domain. The technique involves calculation of
an average Zg(r,-) around ten rings of radii r;
centered on each point and then multiplying
these values and the surface value by the
appropriate coefficients D(r;, k), where k
specifies the continuation level. The coefficients
are stored in the computer in a 2x2 matrix.
Ring values 4¢(x,y,i) are stored in a 3x 3 matrix;
11 values for each point (x, y). Output is in the
form of printed map data.

Spectral Methed: The spectral continuation and
derivative program, written by the author, foll-
ows the algorithm of Argawal (1968) and directly
incorporates most of his programming procedures.
Before transforming the original map data from
the space to frequency domain, the data needs
to be arranged in a symmetrical matrix. The
need for this arrangement is better understood
if one first considers the FFT of 1-dimensional
data. In the frequency domain (Fig. 2), the real
(R) and imaginary(I) parts of the Fourier
coefficients are arranged symmetrically about
a central maximum (Nyquist) frequency by th
standard FFT program. Because a similar pattern
is obtained in a 2-dimensional transform, the
original map data f;; must first be reorganized

-5 MILE
—

' ) CONTINUATION LEVELS
z 7 _
A = \ z=-5
! SURFACE MAP z=-3
DEPTH = 2 MILES 25X 25 GRID POINTS
- z=-1
I 2=0 (SURFACE)
z=1
RADIUS = | MILE
7.3 15 MLE

*2Z=5

Model of a long vertical cylinder used to
compute a magnetic field at the surface
(magnetic susceptibility=.002c.g.s., vertical
earth magnetic field=55150 gammas). AB
identifies line of cross sections for Figures
4 through 8. Possible levels of continuati-
on sketched relative to position of the
cylinder.
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into a symmetric matrix (Fig. 3). This arrangement
anticipates  the FFT
separation of F,, coefficients. These F,,, values

standard  symmetric
must be multiplied by equation (8), and the s and
n values must also be symmetrical (see top and
side of Fig. 3). After multiplication to obtain the
continued field, the inverse FFT returns the
expanded map to the space domain. The program

then extracts the original map size for output,

<~ Nyquist Frequency

A
i
i

Complex Csnjugate

Fig, 2 Sketch illustrating symmetry of 1-dimensional
data after Fast Fourier Transform into the
frequency domain.
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Fig. 3 Sketch illustrating original map data Fig.

and the expanded symmetrical matrix created
before Fast Fourier Transform (FFT). The
harmonic coefficients m and n are displayed
in the symmetric positions for multiplying
the Fourier coefficients after FFT.

4. Empirical Tests and Results

A model magnetic field was computed over a
long vertical cylinder at a depth of two miles.
The cylinder was one mile in radius and 50 miles
in length. The field in gammas was computed
at a grid interval of 0.5 mile to yield a 25X 25 map
output (Fig. 1). Values of this model field were
computed from a standard solid angle program
(Talwani,et. al., 1960). The 625 values were used
as data input for the Henderson and speciral

programs. Continued and derivative fields were

CONTINUATION BY
HENDERSON'S METHOD

6C0 -

.
True value et 1.5 miles own

:

n
3
T

Magnetic Field in Gammas

Cross section of magnetic fields over a
cylinder (see Fig. 1) for three levels of
continuation using Henderson’s method.
True values obtained from solid angle
calculation.

computed for all levels and the results pres
ented in figures 4 through 8.

Figures 4 and 5 compare the true map values
over the’ cylinder(accepting the solid angle
program output as “true values™) with continu-
ed fields using Henderson(H) and spectral(S)
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Fig.4a  Map showing the True magnetic field of a vertical cylinder computed from solid angle analysis
at a level one mile above the original surface (Fig. 1). The northeast quarter of the map shows
the field continued upward one mile (2 grid units) by Henderson’s method (H). The northwest
4b quarter 1s continued upward by the spectral methop (S). Contours in gammas.
Cross section along line AB of map showing all three' fields.
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Fig. 5a

5b

Magnetic Field in Gammas
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nal surface (Fig. 1). The northeast quarter of the map shows

mile by Henderson’s

continued downward by the spectral method (S). Contours in gammas.

Cross section along line AB of

map showing all three fields.

method (H). The northwest quatter is
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methods. For clarity, cross sections are presented
along an east-west line AB. For upward continua-
tion of 1.0 mile (2 grid units), the contours are
almost equivalent on all three maps (Fig. 4a).
In the cross section (Fig. 4b), the true values are
very close to both the spectral and Henderson
output. Although not shown in this report, upward
continuation at all levels is quite successful; errors
are minimal, with only a few gammas difference
in absolute value.

Figure 5 shows the map and cross section for
the field continued downward one mile (2 grid
units). The ‘“true” contours over the central
part of the anomaly (Fig. 5a) are similar to those
computed from the Henderson and spectral
approach, with the spectral method yielding slightly
better results. However, the spectral map displays
strong oscillations along the edges of the map.
This is well illustrated in fiigure 5b. Although not
shown here, continuation below this one mile
level shows the spectral map to be totally unusable.
According to Bhattacharya(1965). we expect oscil-
lations at 2/3 of the depth to the body (our results
yield oscillations at a somewhat shallower depth).

An unexpected result was cbserved when the
map was continued downward below the top of
the body using Henderson’s method (Fig.6). Acc-
ording to Roy (1967) we expect oscillatory values
to mark the top of the body. Even below the body,
the anomaly values increase smoothly, with a
maximum value of only 743 gammas (a value not
easily recognized as unreasonable). There is some
oscillation on the sides of the central peak, but
even these are minor. In contrast to this result,
the spectral method yielded maps with noticeable
oscillations at levels about one mile above the
source.

The field on the axis of a long vertical cylinder
can be approximated by the field of a magnetized

disc given as

Z
4H(Z) =2rkH, [1 —WJ , €9)

where k is the magnetic susceptibility, Hv is the
earth’s vertical magnetic field and a is the radius
of the disc. The first and second derivatives are

0(4H 2
*%’ZL:ZEICH,, [W+Z2)3/2] . (10)
and

9*(4H)

7 )

=6kt |-t gy

(11)

Using the Henderson and spectral method, first
and second derivatives were computed for the
model cylinder at the surface and at a level of 0.5
mile below the surface (Figs. 7 and 8). First and
second derivative caiculations on the surface
yield similar curves as displayed on the cross-
sections. The “true” values over the axis of the
cylinder were calculated from equations (10) and
(11) and are close to that obtained from the compu-
ter output (these results are also given in table 2).

The derivative calculations on a level 0.5 mile
below the surface are also plotted on figures 7
and 8. In general, both methods yield smooth
functions in the central part of the anomaly, but
the spectral method developes strong oscillations
on the flanks. However, the peak value from the
spectral method is very close to the true value,
while the Henderson method is in error. This
result is again consistent with the view that the
spectral results may be more reliable over the
central portion of the anomaly.

5. Conclusions

For upward continuation, Henderson’s method
and the spectral method are equally applicable
and yield similar results. For downward continua-
tion and derivative calculation some discrepancies
are observed between the two methods. Our results
show the spectral method computes near correct
values over the central part of the anomaly. At
the edge of the anomaly, the spectral method
developes serious oscillations 1.2 miles below the
surface (the body is at a depth of two miles).
These oscillations gradually extend toward the
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Table 2. True and computed values of the first and second derivatives of the magnetic field on the axis of a vertical
cylinder (see Fig. 1). Computed values from methods of Henderson (1960) and Argawal {1968): true values

from Equation (10, 11).

first derivative, a%ffzﬁé) , gammas/miles

- : )
second derivative, 2 a(gg’) , gammas/niiles?

comp-tued values : computeud values
depth true and % error depth troe and % error
z values Henderson spectral z values Henderson spectral
0 62 58 (6% | 59 (5% 0 74 64 (-13%) 73 (-1%)
1 118 98 (-17%) 114 (-3%) 1 164 108 (-349%) 155 (-5%)
2 245 170 (-30%) * 2 367 176 (-52%) *
3 496 280 (-43%) * 3 595 272 (-54%) *
*QOscillatory values —not considered meaningful.
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Fig. 8 Cross section of the second derivatives
Fig. 7 Cross section of the first derivatives of of the magnetic field at two levels. Values

the magnetic field at two levels. Values
computed by Henderson’s method and
spectral method. True values over the

axis of the cylinder computed from
equation (10).

center of the map as we continue downward or
increase the order of derivatives.

It is assumed that spectral values near the edge
of the map are intrinsically unstable. Because
Fourier transformation assumes an infinite number
of data points or a perfect periodic function,
limited input data introduces a discontinuity at
the edge of the map. Battacharya (personal

communication) has suggested that a recursive

computed by Henderson’s methed and
spectral method. True values over the
axis of the cylinder computed from
equation (11).

filter can yield maps of significant improvement.
This suggests a new area of future research.
Although not presented in this study, the gravity
field of our modél cylinder was also investigated.
However, the potential gradient between the
center and édge of the map is small and the
increased discontinuity yields more severe oscilla-
tions than those observed from the magnetic
field.

The seriousness of the discrepancies is illustrated
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by comparing values over the axis of the cylinder.
The computed values for continued fields differ
from the true value less than three gammas for
all upward continued fields (Table 1). For
downward continued fields, the spectral method
yields goed results at a depth of one mile (2 grid
units) and then blows up. The Henderson’s method
is still meaningful at 1.5 miles. We suggest,
however, that the reader use caution in applying
values continued downward to levels more than
three-fourths of the depth to the body. Values
should oscillate in the proximity of the body,
but Henderson’s methods seems to subdue these
effects in the case of the model.

Discrepancies in first and second derivatives
are also summarized by comparing the values
over the axis of the cylinder (Table 2). The
spectral method again yields values close to that
predicted analytically (errors of only 5%).
However, the derivative on a level 1.0 mile down
blows up. Henderson’s method does not severely

oscillate as predicated.

Our results suggest that the spectral approach
may be improved by extending the map size and
thereby avoiding the edge effects. In the case of
real (field) data, the values should be carefully
smoothed with a high frequency filter. The sudden
oscillations that appear all over the map is
theoretically consistent with Roy’s observation
(1967) that the maximum level of convergence is a
horizontal plane at the top of the body. Henderson’s
method seemingly yields smooth values for fields
continued quite close to the body. The lack of
prominent oscillations indicates that continuation
must be applied cautiously as a valid indicator
of body depth. However, negative values appear
at levels close to the body and this may be sufficient
to identify the top of the body. No theoretical
calculations have been made to predict the shape
of the convergence surface for Henderson’s
method. Future studies along these lines may be
necessary to explain the distribution of oscillations.
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