• Title/Summary/Keyword: 폐 리튬이온전지

Search Result 37, Processing Time 0.022 seconds

Lithium Ion Battery Recycling Industry in South Korea (국내 리튬이온전지 재활용 산업현황)

  • Kyoungkeun Yoo
    • Resources Recycling
    • /
    • v.32 no.1
    • /
    • pp.13-20
    • /
    • 2023
  • The objective of this article is to summarize the commercial lithium ion battery (LIB) recycling processes in Korea and to suggest new direction for LIB recycling. A representative LIB recycler, SungEel Hitech Co. has successfully operated the LIB recycling process for over 10 years, and new recycling processes were recently proposed or developed by many recycling companies and battery manufacturers. In the new recycling processes, lithium is recovered before nickel and cobalt due to the rapid rise in lithium prices, and metal sulfate solution as final product of recycling process can be supplied to manufacturers. The main problem that the new recycling process will face is impurities, which will mainly come from end-of-life electric vehicles or new additives in LIB, although the conventional processes must be improved for mass processing.

Pre-leaching of Lithium and Individual Separation/Recovery of Phosphorus and Iron from Waste Lithium Iron Phosphate Cathode Materials (폐리튬인산철 양극재로부터 리튬의 선침출 및 인과 철의 개별적 분리 회수 연구)

  • Hee-Seon Kim;Boram Kim;Dae-Weon Kim
    • Clean Technology
    • /
    • v.30 no.1
    • /
    • pp.28-36
    • /
    • 2024
  • As demand for electric vehicles increases, the market for lithium-ion batteries is also rapidly increasing. The battery life of lithium-ion batteries is limited, so waste lithium-ion batteries are inevitably generated. Accordingly, lithium was selectively preleached from waste lithium iron phosphate (LiFePO4, hereafter referred to as the LFP) cathode material powder among lithium ion batteries, and iron phosphate (FePO4) powder was recovered. The recovered iron phosphate powder was mixed with alkaline sodium carbonate (Na2CO3) powder and heat treated to confirm its crystalline phase. The heat treatment temperature was set as a variable, and then the leaching rate and powder characteristics of each ingredient were compared after water leaching using Di-water. In this study, lithium showed a leaching rate of approximately 100%, and in the case of powder heat-treated at 800 ℃, phosphorus was leached by approximately 99%, and the leaching residue was confirmed to be a single crystal phase of Fe2O3. Therefore, in this study, lithium, phosphorus, and iron components were individually separated and recovered from waste LFP powder.

흑연화를 통한 폐 수트의 리튬이온전지용 도전재로의 재활용에 관한 연구

  • Kim, Han-Bin;Choe, Jae-Hyeok;Lee, Won-Ju;Kim, Dae-Yeong;Gang, Jun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.138-138
    • /
    • 2018
  • 선박을 통한 해상수송은 세계 무역의 80% 이상을 차지하고 있으며, 대부분의 선박은 저질중유의 연소로부터 추진력을 발생시키는 디젤 엔진을 원동력으로 사용하고 있다. 이러한 디젤 엔진은 연소의 부산물로 매년 백만 톤 이상의 오염물질을 방출하는데, 그 주성분은 탄소로 이루어져 있고 고온 열분해 또는 압축 점화 엔진의 작동 부산물들이 소량 포함되어 있다. 이에 본 연구에서는 선박으로부터 배출된 폐 수트를 리튬이온전지용 도전재로 활용하기 위한 독특한 방법이 제안되었다. 실험에 사용된 폐 수트는 운항중인 컨테이너선으로부터 수집되었으며, 수집된 폐 수트는 탄소 성분 이외의 불순물을 제거하고 흑연화 정도를 개선시키기 위해 $2,000^{\circ}C$로 열처리되었다. 열처리된 폐 수트의 모폴로지를 확인하기 위해 투과전자현미경을 이용하여 그 형상을 관찰하였으며, 이를 통해 폐 수트의 일차 입자는 지름이 약 70-100 nm 정도인 양파껍질 모양의 탄소(carbon nano-onion)로 형성된다는 것이 확인되었다. 또한, XRD, RAMAN 분광법 및 BET 분석 결과를 통해, 열처리된 폐 수트가 결정성이 있는 흑연으로 재형성되었으며 비표면적은 일반적으로 사용되는 활물질에 비해 약간 더 높다는 것을 확인할 수 있었다. 한편, 이러한 특성은 리튬이온전지용 도전재로 활용될 수 있는 가능성을 보여주었고, 이는 전기화학적 정전류 충전 및 방전 테스트를 통해 그 성능이 확인되었다. 일반적으로 사용되는 도전재의 테스트 결과와 폐 수트를 도전재로 사용한 테스트 결과를 Fig. 1에 나타내었다. 이상의 실험 결과들을 미루어 볼 때, 선박으로부터 배출된 폐 수트가 리튬전지용 음극 활물질 및 도전재로 재활용될 수 있을 것으로 사료된다.

  • PDF

Leaching of Cathodic Active Materials from Spent Lithium Ion Battery (폐리튬이온전지로부터 분리한 양극활물질의 침출)

  • 이철경;김태현
    • Resources Recycling
    • /
    • v.9 no.4
    • /
    • pp.37-43
    • /
    • 2000
  • Leaching of $LiCoO_2$ as a cathodic active materials for recovering Li and Co from spent lithium ion battery was investigated in terms of reaction variables. At the optimum condition determined in the previous work, Li and Co in a $H_2SO_4$ and $HNO_3$ solution were dissolved 70~80% and 40%, respectively. Li and Co were leached over 95% with the addition of a reductant such as $Na_2S_2O_3$ or $H_2O_2$. This behavior is probably due to the reduction of $Co^{3+}$ to $Co^{2+}$. Leaching of $LiCoCo_2$ powder obtained by calcination of an electrode materials from spent batteries was also carried out. Leaching efficiency of Li and Co were over 99% at the optimum condition with $H_2O_2$ addition of 1.7 vol.%. It seems to be due to the activation of $LiCoO_2$ by repeated charging and discharging or an imperfect crystal structure by deintercalation of Li.

  • PDF

Ammoniacal Leaching for Recovery of Valuable Metals from Spent Lithium-ion Battery Materials (폐리튬이온전지로부터 유가금속을 회수하기 위한 암모니아 침출법)

  • Ku, Heesuk;Jung, Yeojin;Kang, Ga-hee;Kim, Songlee;Kim, Sookyung;Yang, Donghyo;Rhee, Kangin;Sohn, Jeongsoo;Kwon, Kyungjung
    • Resources Recycling
    • /
    • v.24 no.3
    • /
    • pp.44-50
    • /
    • 2015
  • Recycling technologies would be required in consideration of increasing demand in lithium ion batteries (LIBs). In this study, the leaching behavior of Ni, Co and Mn is investigated with ammoniacal medium for spent cathode active materials, which are separated from a commercial LIB pack in hybrid electric vehicles. The leaching behavior of each metal is analyzed in the presence of reducing agent and pH buffering agent. The existence of reducing agent is necessary to increase the leaching efficiency of Ni and Co. The leaching of Mn is insignificant even with the existence of reducing agent in contrast to Ni and Co. The most conspicuous difference between acid and ammoniacal leaching would be the selective leaching behavior between Ni/Co and Mn. The ammoniacal leaching can reduce the cost of basic reagent that makes the pH of leachate higher for the precipitation of leached metals in the acid leaching.

A Modified Process for the Separation of Fe(III) and Cu(II) from the Sulfuric Acid Leaching Solution of Metallic Alloys of Reduction Smelted Spent Lithium-ion Batteries (폐리튬이온전지의 용융환원된 금속합금상의 황산침출액에서 철(III)과 구리(II)의 분리를 위한 공정 개선)

  • Nguyen, Thi Thu Huong;Tran, Thanh Tuan;Lee, Man Seung
    • Resources Recycling
    • /
    • v.31 no.1
    • /
    • pp.12-20
    • /
    • 2022
  • The smelting reduction of spent lithium-ion batteries results in metallic alloys containing Co, Cu, Fe, Mn, Ni, and Si. A process to separate metal ions from the sulfuric acid leaching solution of these metallic alloys has been reported. In this process, ionic liquids are employed to separate Fe(III) and Cu(II). In this study, D2EHPA and Cyanex 301 were employed to replace these ionic liquids. Fe(III) and Cu(II) from the sulfate solution were sequentially extracted using 0.5 M D2EHPA with three stages of cross-current and 0.3 M Cyanex 301. The stripping of Fe(III) and Cu(II) from the loaded phases was performed using 50% (v/v) and 60% (v/v) aqua regia solutions, respectively. The mass balance results from this process indicated that the recovery and purity percentages of the metals were greater than 99%.

Leaching of Valuable Metals from NCM Cathode Active Materials in Spent Lithium-Ion Battery by Malic acid (폐리튬이온전지 NCM 양극활물질로부터 말릭산을 이용한 유가금속의 침출)

  • Son, Seong Ho;Kim, Jin Hwa;Kim, Hyun-Jong;Kim, Sun Jung;Lee, Man Seung
    • Resources Recycling
    • /
    • v.23 no.4
    • /
    • pp.21-29
    • /
    • 2014
  • Nickel, cobalt and manganese-based(NCM, $Li(Ni_xCo_yMn_z)O_2$) cathode active materials of spent lithium-ion batteries contained valuable metals such as cobalt(15 ~ 20%), nickel(25 ~ 30%), manganese(10 ~ 15%) and lithium(5 ~ 10%). It was investigated the eco-friendly leaching process for the recovery of valuable metal from spent lithium-ion battery NCM cathode active materials by DL-malic acid($C_4H_5O_6$) as an organic leachant in this research. The experiments were carried out to optimize the process parameters for the recovery of cobalt, nickel and lithium by varying the concentration of lixivant, reductant concentration, solid/liquid ratio and temperature. The leaching solution was analyzed using ICP-OES(Inductively Coupled Plasma Optic Emission Spectrometer). Cathode active materials of 5 wt. % were introduced into the leaching solution which was 2 M DL-malic acid in addition of 5 vol. % $H_2O_2$ at $80^{\circ}C$ and it resulted in the recovery of 99.10% cobalt, 99.80% nickel and 99.75% lithium in 120 min. $H_2O_2$ in DL-malic acid solution acts as an effective reducing agents, which enhance the leaching of metals.

Comparison of Li(I) Precipitation from the Leaching Solution of the Dust from Spent Lithium-ion Batteries Treatment between Sodium Carbonate and Ammonium Carbonate (폐리튬이온전지 처리시 발생한 더스트 침출용액으로부터 Na2CO3와 (NH4)2CO3에 의한 리튬(I) 석출 비교)

  • Nguyen, Thi Thu Huong;Lee, Man Seung
    • Resources Recycling
    • /
    • v.31 no.5
    • /
    • pp.34-41
    • /
    • 2022
  • Smelting reduction of spent lithium-ion batteries results in metallic alloys, slag, and dust containing Li(I). Precipitation of Li2CO3 was performed using the synthetic leachate of the dust. Herein, the effects of the precipitant and addition of non-aqueous solvents on the precipitation of Li(I) were investigated. Na2CO3 was a more effective precipitating agent than (NH4)2CO3 owing to the hydrolysis reaction of dissolved ammonium and carbonate. The addition of acetone or ethanol improved the Li(I) precipitation percentage for both the precipitants. When using (NH4)2CO3, the Li(I) precipitation percentage increased at a solution pH of 12. Under the same conditions, the Li(I) precipitation percentage using Na2CO3 was much higher than that using (NH4)2CO3.

Solvent Extraction of Co(II) and Cu(II) from Hydrochloric Acid Solution of Spent Lithium-ion Batteries Containing Li(I), Mn(II), and Ni(II) (Li(I), Mn(II) 및 Ni(II)를 함유한 폐리튬 이온 배터리의 염산침출용액에서 Co(II) 및 Cu(II)의 용매 추출)

  • Le, Minh Nhan;Lee, Man Seung
    • Resources Recycling
    • /
    • v.29 no.5
    • /
    • pp.73-80
    • /
    • 2020
  • In order to develop a process for the recovery of valuable metals from spent LiBs, solvent extraction experiments were performed to separate Cu(II) and/or Co(II) from synthetic hydrochloric acid solutions containing Li(I), Mn(II), and Ni(II). Commercial amines (Alamine 336 and Aliquat 336) were employed and the extraction behavior of the metals was investigated as a function of the concentration of HCl and extractants. The results indicate that HCl concentration affected remarkably the extraction efficiency of the metals. Only Cu(II) was selectively at 1 M HCl concentration, while both Co(II) and Cu(II) was extracted by the amines when HCl concentration was higher than 5 M, leaving the other metal ions in the raffinate. Therefore, it was possible to selectively extract either Cu(II) or Co(II)/Cu(II) by adjusting the HCl concentration.

A Study on the Synthesis and Electrochemical Characteristics of Carbonized Coffee Powder for Use as a Lithium-Ion Battery Anode (리튬 이온 이차전지 음극 활물질용 탄화 커피 분말 제조 및 전기화학적인 특성연구)

  • Kim, Tae Gyun;Cho, Jin Hyuk;Pham-Cong, De;Jeon, Injun;Hwang, Jin Hyun;Kim, Kyoung Hwa;Cho, Chae Ryong
    • New Physics: Sae Mulli
    • /
    • v.68 no.12
    • /
    • pp.1315-1323
    • /
    • 2018
  • We studied the carbonization due to the annealing condition of waste coffee powder for application as an active anode material for lithium-ion batteries (LIBs). The coffee powder used as an active anode material for LIBs was obtained from coffee beans, not from a coffee shells. The waste coffee powder was dried in air and heat-treated in an $Ar/H_2$ atmosphere to obtain a pore-forming activated carbon powder. The specific capacity of the sample annealed at $700^{\circ}C$ was still 303 mAh/g after 1000 cycles at a current density of 1000 mA/g and with a coulombic efficiency of over 99.5%. The number of pores and the pore size of the waste coffee powder were increased due to chemical treatment with KOH, which had the some effect as an increased specific surface area. The waste coffee powder is considered to be a very promising active anode material because of both its excellent electrochemical properties due to enhanced carrier conduction and its being a cost effective resource for use in LIBs.