• Title/Summary/Keyword: 폐석탄광산

Search Result 7, Processing Time 0.02 seconds

Transfer of Arsenic from Soilsto Rice Grains through Reducing the Thickness of Soil Covering in Soil Reclamation in an Abandoned Coal Mine Area (폐석탄광산 농경지(논) 토양개량복원 시 복토두께 조정에 따른 비소의 벼 전이효과 현장실증)

  • Il-Ha Koh;Yo Seb Kwon;Ju In Ko;Won Hyun Ji
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.3
    • /
    • pp.157-165
    • /
    • 2023
  • In Korea, a major contaminant of farmland soils in the vicinity of abandoned mines is arsenic, for which the general soil reclamation method is contaminated soil stabilization and cover the stabilized soil with clean soil at a thickness of 40 cm. In a previous pot experiment study we confirmed the feasibility of a lower thickness (20 cm) of covering soil for such reclamation in abandoned coal mines, where arsenic contamination levels are generally lower than in metal mines. In this subsequent study a field experiment including rice plant cultivation in field test plots was conducted. For over 4 months, the transfer of arsenic from the contaminated soil to the unpolished rice grains was reduced by 44% when a clean soil covering with a thickness of 20 cm was applied. The maximum decrease (56%) was shown when the stabilization process was performed before the covering. These results reveal a lower thickness of clean soil covering has a high feasibility and it can increase cost-efficiency in the reclamation of an abandoned coal mine.

Environmental Pollution and Reclamation in the Abandoned Mines in Korea (국내 폐 광산 환경오염 실태 및 처리 현황)

  • Cheong Young-Wook;Min Jeong-Sik
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2001.09a
    • /
    • pp.75-89
    • /
    • 2001
  • There are 334 coal mines and about 900 metal mines abandoned. The environmental problems such as acid mine drainage from adits etc. and the subsidence has occurred in the abandoned mines. In addition, soil has been contaminated by tailings. According to analysis of mine drainages, some of them from adits in the abandoned coal and metallic mines were acidic and polluted by heavy metals. Especially, water quality of coal mine drainages were different by areas. Treatment of mine drainage by conventional chemical treatment has the drawback because the operating cost is very expensive. The treatment system used in mine drainage is the natural treatment system such as anoxic limestone drain in adits and the constructed wetland. The method of reclamation for abandoned waste rocks and tailings impoundments are mainly landfilling.

  • PDF

Geochemical Behaviour of Zn, Mn and As during the Weathering of Sphalerite, Rhodochrosite, and Manganoan Calcite in the Waste-rock Dumps of the Dadeok Mine (다덕광산 폐석내 섬아연석, 능망간석, 함망간 방해석의 화학적 풍화작용과 Zn, Mn, As의 지구화학적 거동)

  • 정기영;이병윤;이석훈
    • Journal of the Mineralogical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.73-83
    • /
    • 2000
  • 다덕 광산 폐석내 섬아연석과 함망간탄산염 광물의 풍화현상과 그에 따른 중금속의 거동을 조사 하였다. 섬아연석은 풍화초기에 극미립 산화철의 망상구조 집합체로 교대되었으며, 후기에는 자연황이 용해중인 섬아연석과 산화철 집합체 사이에 침전되었다. 산화철 집합체에는 As가 다량 함유되어 있다. 능망간석와 함망간 방해석은 함아연산화망간의 망상구조 집합체로 교대되었으며, 함망간방해서과 함아연산화망간 사이에는 스미소나이트가 침전되었다. 선택적 용해외 X선회절분석을 이용하여 감정한 결과, 함아연산화망간은 헤테롤라이트/하이드로헤테롤라이트인 것으로 판명되었다. Zn의 일부는 규산과 결합하여 입간 공극에 월레마이트로 침전되었다. 풍화 초기에 형성되는 극미립 산화철 및 함아연산화망간의 치밀한 망상 집합체는 풍화용액의 순환을 차단하여, 모광물의 풍화 반응을 지체시키는 지화학적 장벽 역할을 하였다. 이에 따라 망상구조 내에 조성된 국지적 미환경하에서 풍화중간산물들이 침전되었다. 이상의 연구 결과로 다음과 같은 사항을 추론할 수 있다. 섬아연석의 Fe와 함망간탄산염의 Mn은 각각 산화철과 산화망간으로 침전되어 산성화에 기여하였다. 폐광석 더미내 As의 활동도는 저결정질 산화철에의 흡착에 의해 조절되며, Zn의 활동도는 미소환경조건에 따라 하이드로헤테롤라이트/헤테롤라이트, 스미소나이트, 월레마이트 등의 다양한 이차광물의 용해도에 의하여 조절된다.

  • PDF

Transfer of Arsenic from Paddy Soils to Rice Plant under Different Cover Soil Thickness in Soil Amendments in Abandoned Coal Mine (폐탄광지역 비소오염 농경지(논) 개량 시 복토두께에 따른 비소의 벼 전이 및 토양용액 특성)

  • Koh, Il-Ha;Kwon, Yo Seb;Jeong, Mun-Ho;Ko, Ju In;Bak, Gwan-In;Ji, Won Hyun
    • Economic and Environmental Geology
    • /
    • v.54 no.4
    • /
    • pp.483-494
    • /
    • 2021
  • This study was carried out to investigate the feasibility of reducing clean cover soil using a flooded column test in arsenic-contaminated farmland reclamation of abandoned coal mine area that shows generally low or about worrisome level (25 mg/kg) of Korea soil environment conservation act unlike abandoned metal mine. During the monitoring period of soil solution for 4 months, chemical properties (pH, EC, ORP, Fe, Mn, Ca, and As) in each layer (clean soil cover and contaminated/stabilized soil) showed different variation. This result revealed that soil solution in stabilized or contaminated soil rarely affected that in cover soil. Whether stabilized or not, arsenic concentrations in the rice roots grown in the soil covers with the thickness of 40 cm decreased by 98% in compared with the that grown in the control soil. In case of the soil covers with 20 cm thickness on stabilized soil, it decreased by 80% and this was 22 percentage point higher than when the soil of lower layer was not stabilized. Thus, reducing clean cover soil could be possible in contaminated farmland soil reclamation if appropriate stabilization of contaminated soil is carried.

Mineralogy of Precipitates and Geochemisty of Stream Receiving Mine Water in the Sambong Coal Mine (삼봉탄광 주변 수계에 대한 지화학적 특성 및 침전물에 대한 광물학적 연구)

  • Woo, Eum Sik;Kim, Young Hun;Kim, Jeong Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.199-207
    • /
    • 2016
  • One of the most significant environmental issues in abandoned coal mine is acidic drainage which gives rise to the many environmental problems that acidifying streams water, sedimentation of iron/aluminium hydroxide, and pollution of water and soil. Water and precipitate samples for experiments were collected from stream and bottom in the pit mouth of Sambong mine. Mine water shows pH range from 7.24 to 7.94 in winter and 3.87 to 5.73 in summer season. The EC shows range from 432 to $897{\mu}S/cm$ at the stream receiving mine water. The highest concentrations of cations such as Mg, Al, Ca, and Mn are showing 15.50, 4.56, 85.30, 12.76 mg/L in the pit mouth, respectively. The reddish brown precipitates (Munsell color 10R-5YR in winter and 2.5YR-5Y in summer) consist mainly of 2-line ferrihydrite and schwertmannite. The precipitates are characterized by rod or cylindrical forms, and coccus or sphere of 0.1 to $0.5{\mu}m$ in diameter.

Evaluating Stabilization Efficiency of Coal Combustion Ash (CCA) for Coal Mine Wastes: Column Experiment (석탄회를 이용한 석탄광산 폐기물의 안정화 효율성 평가: 컬럼 시험)

  • Oh, Se-Jin;Kim, Sung-Chul;Ko, Ju-In;Lee, Jin-Soo;Yang, Jae-E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1071-1079
    • /
    • 2011
  • In this study, coal combustion ash (CCA) was evaluated for its stabilization effect on acidic mine waste with column experiment. Total of six treatments were installed depending on mixing ratio between coal wastes and CCA (0, 20, 40%) and mixing method (completely mixing and layered). Artificial acidic rain (pH 5.6) was used for feeding solution with flow rate of $0.05mL\;min^{-1}$. Result showed that higher pH of leachate was observed as more CCA was mixed. The highest pH in leachate was measured when 40% of CCA was mixed with coal waste (pH of 5.8). Also, complete mixing with CCA and coal waste was more effective to increase the pH of leachate than layered treatment. Regarding the reduction of soluble Fe amount, the highest efficiency (78%) was observed when 20% of coal ash was completely mixed with mine waste. Based on those result, optimum mixing ratio of coal ash with mine waste can be ranged 20-40% depending on environmental circumstances in the field.

Spectral Characteristics associated with Heavy Metal Concentration and Mineral Composition in Cropland and Rice Field Soils from Downstream of an Abandoned Coal Mine (폐석탄광 하류 밭토양 및 논토양의 중금속 함량과 광물조성에 따른 분광학적 특성)

  • Seo, Jihee;Yu, Jaehyung;Koh, Sang-Mo;Lee, Bum Han
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.743-753
    • /
    • 2020
  • This study analyzed heavy metal concentration, mineral composition, and spectral characteristics of heavy metal contaminated soil samples of cropland and rice field located in downstream of abandoned Okdong coal mine. X-ray fluorescence analysis detected heavy metal elements including cadmium, copper, arsenic, lead, zinc and nickel in the soils. Both cropland and rice field samples were severely contaminated with arsenic showing higher concentration over the concerned standard. The pollution index of cropland samples was higher than that of rice field samples. X-ray powder diffraction analysis identified that the mineral composition of cropland and rice field samples is similar with quartz, calcite, kaolinite, illite, smectite, magnetite and hematite. The range of organic matter content were more widely distributed in cropland samples. The spectral analysis showed that the reflectance spectra and the absorption features of cropland and rice field samples were alike. The absorption features that appeared near 490nm and 900nm were attributed to the ferric iron, and clay minerals such as kaolinite and smectite caused the absorption features at 1410nm, 1910nm and 2200nm. The reflectance of the soil spectral decreased with an increase in organic content. The absorption depths of both types of soil samples decreased with higher organic matter content at 490nm and 1916nm as well as higher heavy metal concentration.