DOI QR코드

DOI QR Code

Mineralogy of Precipitates and Geochemisty of Stream Receiving Mine Water in the Sambong Coal Mine

삼봉탄광 주변 수계에 대한 지화학적 특성 및 침전물에 대한 광물학적 연구

  • Woo, Eum Sik (National Institute of Environmental Research) ;
  • Kim, Young Hun (Department of Environmental Engineering, Andong National University) ;
  • Kim, Jeong Jin (Department of Earth and Environmental Sciences, Andong National University)
  • 우엄식 (국립환경과학원 물환경연구부) ;
  • 김영훈 (안동대학교 환경공학과) ;
  • 김정진 (안동대학교 지구환경과학과)
  • Received : 2016.11.21
  • Accepted : 2016.12.28
  • Published : 2016.12.30

Abstract

One of the most significant environmental issues in abandoned coal mine is acidic drainage which gives rise to the many environmental problems that acidifying streams water, sedimentation of iron/aluminium hydroxide, and pollution of water and soil. Water and precipitate samples for experiments were collected from stream and bottom in the pit mouth of Sambong mine. Mine water shows pH range from 7.24 to 7.94 in winter and 3.87 to 5.73 in summer season. The EC shows range from 432 to $897{\mu}S/cm$ at the stream receiving mine water. The highest concentrations of cations such as Mg, Al, Ca, and Mn are showing 15.50, 4.56, 85.30, 12.76 mg/L in the pit mouth, respectively. The reddish brown precipitates (Munsell color 10R-5YR in winter and 2.5YR-5Y in summer) consist mainly of 2-line ferrihydrite and schwertmannite. The precipitates are characterized by rod or cylindrical forms, and coccus or sphere of 0.1 to $0.5{\mu}m$ in diameter.

폐 석탄광산에서 가장 큰 환경문제는 산성광산배수가 유출되어 주변 하천수의 pH를 낮추고 철/알루미늄 수산화물을 하천바닥에 침전시키며 주변 토양을 오염시키는 것이다. 삼봉광산에서 물시료와 침전물 시료는 갱구 입구에서 채취하였다. 채취한 갱내수의 pH 값의 범위는 겨울에 7.24-7.94이며, 여름에 3.87-5.73이다. 전기전도도는 갱내수가 유입되는 하천에서 $432-897{\mu}S/cm$이다. 갱내수의 Mg, Al, Ca, Mn의 최고 농도값은 각각 15.50, 4.56, 85.30, 12.76 mg/L이다. 적갈색의 침전물은 겨울에는 Munsell color 10R-5YR 정도로 주구성광물은 2-line 페리하이드라이트이며, 여름에는 2.5YR-5Y의 범위로 주구성광물은 슈워트마나이트이다. 주사전자현미경 관찰 결과 침전물은 막대형 혹은 원통형이거나, $0.1-0.5{\mu}m$의 구균형이나 구형을 나타내고 있다.

Keywords

References

  1. Acero, P., Ayora, C., Torrento, C., and Nieto, J.M. (2006) The behavior of trace elements during schwertmannite precipitation and subsequent transformation into goethite and jarosite. Geochimica et Cosmochimica Acta, 70, 4130-4139. https://doi.org/10.1016/j.gca.2006.06.1367
  2. Bigham, J.M., Schwertmann, U., Carlson, L., and Murad, E. (1990) A poorly crystallized oxy-hydroxysulfate of iron formed by bacterial oxidation of Fe(II) in acid mine waters. Geochimica et Cosmochimica Acta, 54, 2743-2758. https://doi.org/10.1016/0016-7037(90)90009-A
  3. Bigham, J.M., Schwertmann, U., Traina, S.J., Winland, R.L., and Wolf, M. (1996) Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochimica et Cosmochimica Acta, 60, 2111-2121. https://doi.org/10.1016/0016-7037(96)00091-9
  4. Burton, E.D., Bush, R.T., Sullivan, L.A., and Mitchell, D.R.G. (2008) Schwertmannite transformation to goethite via the Fe(II) pathway: reaction rates and implications for iron-sulfide formation. Geochimica et Cosmochimica Acta, 72, 4551-4564. https://doi.org/10.1016/j.gca.2008.06.019
  5. Cudennec, Y. and Lecerf, A. (2006) The transformation of ferrihydrite into goethite or hematite, revisited, Journal of Solid State Chemistry, 179, 716-722. https://doi.org/10.1016/j.jssc.2005.11.030
  6. Kelly, M. (1988) Mining and the freshwater environment, Elsevier Applied Science, London and New York, 231p.
  7. Kim, J.Y., Jang Y.D., Kim, Y.H., and Kim, J.M. (2014) Characteristics of precipitates and geochemistry of mine and leachate water in Janggun mine. Journal of Mineralogical Society of Korea, 27, 125-134. https://doi.org/10.9727/jmsk.2014.27.3.125
  8. Kim, Y.K., Hwang, S.H., and Yu, J.Y. (2011) Al Polymer (Al13-tridecamer) in White Precipitate in Acid Mine Drainage, Journal of Mineralogical Society of Korea, 24, 145-149. https://doi.org/10.9727/jmsk.2011.24.2.145
  9. Kumpulainen, S., Carlson, L., and Raisanen, M.L. (2007) Seasonal variations of ochreous precipitates in mine effluents in Finland. Applied Geochemistry, 22, 760-777. https://doi.org/10.1016/j.apgeochem.2006.12.016
  10. Liu, H. Ma, M. Qin, M. Yang, L., and Wei, Y. (2010) Studies on the controllable transformation of ferrihydrite. Journal of Solid State Chemistry, 183, 2045-2050. https://doi.org/10.1016/j.jssc.2010.07.012
  11. Michaud, L.H. (1995) Recent technology related to the treatment of acid drainage, Earth Mineral Science, 63, 53-55.
  12. Murad, E. and Rojík, P. (2003) Iron-rich precipitates in a mine drainage environment: influence of pH on mineralogy. American Mineralogist 88, 1915-1918. https://doi.org/10.2138/am-2003-11-1234
  13. MIRECO (2015) Yearbook of MIRECO statistics, Mine reclamation corporation, p. 342.
  14. Nordstrom, D.K., Jenne, E.A., and Ball, J.W. (1979) Redox equilibria of iron in acid mine water. In Chemical Modeling in Aqueous System (ed. E.A. Jenne). American Chemical Society Symposium Series, 93, 51-79.
  15. Peretyazhko, T., Zachara, J.M., Boily, J.F., Xia, Y., Gassman, P.L., Arey, B.W., and Burgos, W.D. (2009) Mineralogical transformations controlling acid mine drainage chemistry. Chemical Geology, 262, 169-178. https://doi.org/10.1016/j.chemgeo.2009.01.017
  16. Schwertmann, U. and Carlson, L. (2005) The pH-dependent transformation of schwertmannite to goethite at 25 C. Clay Minerals, 40, 63-66. https://doi.org/10.1180/0009855054010155
  17. Winland, R.L., Traina, S.J., and Bigham, J.M. (1991) Chemical composition of ocherous precipitates from Ohio coal mine drainage. Journal of Environmental Quality, 20, 452-460.
  18. Woo, E.S., Kim, J.J., Kim, Y.H. Jeong, G.C., Jang, Y.D., and Warren A.D. (2013) Mineralogical and geochemical characterization of precipitates on stream receiving acid mine water, Korea, Environmental Earth Science, 69, 2199-2209. https://doi.org/10.1007/s12665-012-2048-6
  19. Yu, J. (1996) precipitation of Fe and Al compounds from the acid mine water in the Dogyae area, Korea: A qualitative measure of equilibrium modeling applicability and neutralization capacity. Geochemistry, 1, 81-105.