DOI QR코드

DOI QR Code

Transfer of Arsenic from Paddy Soils to Rice Plant under Different Cover Soil Thickness in Soil Amendments in Abandoned Coal Mine

폐탄광지역 비소오염 농경지(논) 개량 시 복토두께에 따른 비소의 벼 전이 및 토양용액 특성

  • Koh, Il-Ha (National Environment Lab. (NeLab)) ;
  • Kwon, Yo Seb (National Environment Lab. (NeLab)) ;
  • Jeong, Mun-Ho (Institute of Mine Reclamation Technology, Mine Reclamation Corporation) ;
  • Ko, Ju In (Institute of Mine Reclamation Technology, Mine Reclamation Corporation) ;
  • Bak, Gwan-In (Institute of Mine Reclamation Technology, Mine Reclamation Corporation) ;
  • Ji, Won Hyun (Institute of Mine Reclamation Technology, Mine Reclamation Corporation)
  • 고일하 (환경기술정책연구원 (NeLab)) ;
  • 권요셉 (환경기술정책연구원 (NeLab)) ;
  • 정문호 (한국광해관리공단 기술연구소) ;
  • 고주인 (한국광해관리공단 기술연구소) ;
  • 박관인 (한국광해관리공단 기술연구소) ;
  • 지원현 (한국광해관리공단 기술연구소)
  • Received : 2021.08.26
  • Accepted : 2021.08.27
  • Published : 2021.08.31

Abstract

This study was carried out to investigate the feasibility of reducing clean cover soil using a flooded column test in arsenic-contaminated farmland reclamation of abandoned coal mine area that shows generally low or about worrisome level (25 mg/kg) of Korea soil environment conservation act unlike abandoned metal mine. During the monitoring period of soil solution for 4 months, chemical properties (pH, EC, ORP, Fe, Mn, Ca, and As) in each layer (clean soil cover and contaminated/stabilized soil) showed different variation. This result revealed that soil solution in stabilized or contaminated soil rarely affected that in cover soil. Whether stabilized or not, arsenic concentrations in the rice roots grown in the soil covers with the thickness of 40 cm decreased by 98% in compared with the that grown in the control soil. In case of the soil covers with 20 cm thickness on stabilized soil, it decreased by 80% and this was 22 percentage point higher than when the soil of lower layer was not stabilized. Thus, reducing clean cover soil could be possible in contaminated farmland soil reclamation if appropriate stabilization of contaminated soil is carried.

본 연구에서는 폐금속광산과는 달리 우려기준 전후의 낮은 비소 오염농도 분포특성을 가지는 폐석탄광산 농경지 토양을 대상으로 광해방지사업(토양개량·복원사업) 시 복토층의 두께 감소 가능여부를 벼를 식재한 담수형 컬럼실험을 통해 검토하였다. 담수 후 4개월 동안 토양용액의 pH, EC, ORP 및 무기원소(Fe, Mn, Ca, As) 농도를 모니터링한 결과 컬럼하층에서 상층으로 미치는 영향은 높지 않은 것으로 나타났다. 복토 두께에 따른 비교에서도 하층의 영향보다는 복토층 두께 변화에 따른 ORP 변화가 복토재 무기원소의 거동에 영향을 미치는 결과를 보였다. 이러한 결과는 토양용액의 거동이 상하층간 반응의 영향보다는 각 층별 나타나는 토양의 이질성에 우선하여 나타난 것으로 판단되었다. 모니터링 종료시점에서 채취한 벼 뿌리의 비소 농도는 현행 사업 조건과 같은 40 cm 두께의 복토층을 조성한 경우 컬럼하층의 안정화 처리여부에 상관없이 대조구 대비 98%가 감소되었다. 20 cm 두께의 복토층에서는 오염토의 안정화가 없을 경우 58%, 안정화처리 시 80%의 전이감소 효율을 나타내었다. 따라서 오염 농경지 토양에 대한 적정 안정화 처리를 수행할 경우 복토재의 사용량을 감소시킬 수 있으며, 경제적인 사업수행효과도 이룰 수 있을 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 2020년 한국광해관리공단으로부터 기술개발 사업비를 지원받아 수행된 것임.

References

  1. Brady, N.C. and Weil, N.N. (2014) Elements of the nature and properties of soils. Pearson Education Limited, p.358-359.
  2. Cox, P.A. (1995) The elements on earth, Oxford University Press, Oxford, New York, Tokyo, 110p.
  3. Han, H.J., Kim, J.Y., Lee, B.T., Kim, K.W., Kim, Y.S. and Lee, J.S. (2013) Comparative study on the characteristics of two sequential extraction methods for arsenic fractionations in the soil. J. KSMER, v.50, p.35-43. https://doi.org/10.12972/ksmer.2013.50.1.035
  4. He, Z.L., Shentu, J. and Yang, X.E. (2010) Manganese and selenium. In Hooda, P.S.(ed.) Trace elements in soils, John Wiley & Sons, Ltd., 485p.
  5. Jung, M.C. and Jung, M.Y. (2006) Evaluation and management method of environmental contamination from abandoned metal mines in Korea, J. KSMER, v.43, p.383-394.
  6. Jung, Y.K., Hong, J.H., Lee, D.J., Kim, J.P., Kim, D.K. and Joo, S.D. (2008) A study on mine drainage characteristics as abandoned coal mine in Gyeongsang province, Proceedings of the Korean Geotechnical Society Conference, Gwangju, Korea, p.1440-1445.
  7. Kim, M.S., Park, M.J., Yang, J.H. and Lee, S.H. (2019) Human health risk assessment for toxic trace elements in the Yaro mine and reclamation options. Int. J. Environ. Res. Public Health, v.16, 5077. doi: 10.3390/ijerph16245077
  8. Kirk, G.J.D., Greenway, H., Atwell, B.J., Ismail, A.M. and Colmer, T.D. (2014) Adaptation of rice to flooded soils. In Luttge, U., Beyschlag, W. and Cushman, J. (ed) Progress in Botany 75, Springer, Heidelberg, New York, Dordrecht, London, 223p.
  9. Kirk, G. (2004) The biochemistry of submerged soils. John Wiley & Sons, Ltd., p.109-112p.
  10. Koh, I.H., Kim, E.Y., Ji, W.H., Yoon, D.G. and Chang, Y.Y. (2015a) The fate of As and Heavy metals in the flooded paddy soil stabilized by limestone and steelmaking slag, J. Soil Groundw. Environ., v.20, p.7-18.
  11. Koh, I.H., Kim, E.Y., Kwon, Y.S., Ji, W.H., Joo, W.H., Kim, J.H., Shin, B.S. and Chang, Y.Y. (2015b) Partitioning of heavy metals between rice plant and limestone-stabilized paddy soil contaminated with heavy metals. J. Soil Groundw. Environ., v.20, p.90-103.
  12. Koh, I.H., Kim, J.E., Kim, G.S. and Ji, W.H. (2017) Transfer of arsenic and heavy metals from soils to rice plant under different drainage conditions. J. Soil Groundw. Environ., v.22, p.12-21. https://doi.org/10.7857/JSGE.2017.22.6.012
  13. Koh, I.H., Lee, S.H., Lee, W.S. and Chang, Y.Y. (2013) Assessment on the transition of arsenic and heavy metal from soil to plant according to stabilization process using limestone and steelmaking slag. J. Soil & Groundwater Env., v.18, p.63-72. https://doi.org/10.7857/JSGE.2013.18.7.063
  14. Kwon, H.H. and Nam, G.S. (2013) Mine Reclamation Engineering, DongHwa Technology Publishing Co., 27p, 268-270p.
  15. Kwon, J.C., Jeong, S.H., Jung, M.C. and Kim, T.S. (2013) Seasonal variation and correlation between soil and crop plant of arsenic and heavy metal concentrations in paddy fields around the Yeongdae Au-Ag mine, Korea. J. KSMER, v.50, p.212-226. https://doi.org/10.12972/ksmer.2013.50.2.212
  16. Kwon, Y.S., Koh, I.H., Yang, S.C. and In, H.J. (2021) Characteristics of agricultural soil contamination in abandoned coal mine by regional river system, Proceedings of the Korean Society of Soil and Groundwater Environment Conference, Gyeongju, Korea, p.152-153.
  17. Li, J., Dong, f., Lu, Y., Yan, Q. and Shim, H. (2014) Mechanisms controlling arsenic uptake in rice grown in mining impacted regions in south China. PLOS ONE, v.9, doi: 10.1371/journal.pone.0108300.
  18. Lim, J.E., Kim, K.R., Lee, S.S., Kwon, O.K., Yang, J.E. and Ok, Y.S. (2010) Stabilization of As (arsenic(V) or roxarsone) contaminated soils using zerovalent iron and basic oxygen furnace slag. J. Korean Soc. Environ. Eng., v.32, p.631-638.
  19. Makino, T., Maejima, Y., Akahane, I., Kamiya, T., Takano, H., Fujitomi, S., Ibaraki, T., Kunhikrishnan, A. and Bolan, N. (2016) A practical soil washing method for use in a Cd-contaminated paddy field, with simple on-site wastewater treatment. Geoderma, v.270, p.3-9. https://doi.org/10.1016/j.geoderma.2016.01.006
  20. Makino, T., Takano, H., Kamiya, T., Itou, T., Sekiya, N., Inahara, M. and Sakurai, Y. (2008) Restoration of cadmium-contaminated paddy soils by washing with ferric chloride: Cd extraction mechanism abd bench-scale verification. Chemosphere, v.70, p.1035-1043. https://doi.org/10.1016/j.chemosphere.2007.07.080
  21. Makino, T., Kamiya, T., Takano, H., Itou, T., Sekiya, N., Sasaki, K., Maejima, Y. and Sugahara, K. (2007) Remediation of cadmiumcontaminated paddy soils by washing with calcium chloride: Verification of on-site washing. Environ. Pollut., v.147, p.112-119. https://doi.org/10.1016/j.envpol.2006.08.037
  22. Meharg, A.A. and Zhao, F.J. (2012) Arsenic & rice, Springer, Dordrecht, Heidelberg, London, New York, p.71-74.
  23. MFDS (Korea Ministry of Food and Drug Safety) (2016) Korean Food Standards Codex.
  24. NAAS (National Academy of Agricultural Science) (2010) Methods of soil chemical analysis.
  25. Nakamura, K. and Katou, H. (2013) Arsenic and cadmium solubilization and immobilization in paddy soils in response to alternate submergence and drainage. In Selim, H.M. (ed.) Competitive sorption and transport of heavy metals in soils and geological media, CRC Press, p.379-404.
  26. Navarro, M.C., Perez-Sirvent, C., Martinez-Sanchez, M.J., Vidal, J., Tovar, P.J. and Bech, J. (2008) Abandoned mine sites as a source of contamination by heavy metals: A case study in a semi-arid zone. J. Geochem. Explor., v.96, p.183-193. doi: 10.1016/j.gexplo.2007.04.011.
  27. NIER (National Institute of Environmental Research) (2018) Korea standard methods for soil analysis.
  28. NIER (National Institute of Environmental Research) (2019) Korea standard methods for water analysis.
  29. O'Neill, P. (1990) Arsenic. In Alloway, B.J. (ed.) Heavy metals in soils, Blackie, Glasgow, London, 93p.
  30. Park, S.W., Yang, J.S., Ryu, S.W., Kim, D.Y., Shin, J.D., Kim, W.I., Choi, J.H., Kim, S.L. and Saint, A.F. (2009) Uptake and translocation of heavy metals to rice plant on paddy soils in "Top-Rice" cultivation areas. Korean J. Environ. Agric., v.28, p.131-138. https://doi.org/10.5338/KJEA.2009.28.2.131
  31. Pierzynski, G.M., Sims, J.T. and Vance, G.F. (1994) Soils and environmental quality. Lewis Publishers, Boca Raton, Ann Arbor, London, Tokyo, p.229-231.
  32. Sparks, D.L. (1995) Environmental soil chemistry. Academic Press, San Diego, New York, Boston, London, Sydney, Tokyo, Toronto, p.190-191.
  33. Yang, J.E., Jung, J.B., Kim, J.E. and Lee, G.S. (2008) Ag-Environmental Science, CIR.
  34. Yun, S.W., Kang, S.I., Jin, H.G., Kim, H.J. and Yu, C. (2011) Leaching characteristics of arsenic and heavy metals and stabilization effects of limestone and steel refining slag in a reducing environment of flooded paddy soil. J. Agric. Life Sci., v.45(6), p.251-263.
  35. Zhu, X., Qi, X., Wang, H., Shi, Y., Liao, T., Li, Y., Liu, C. and Wang, X. (2014) Characterization of high-arsenic sludge in copper metallurgy plant. In Sarpenter, J.S., Bai, C., Hwang, J.Y., Ikhmayies, S., Li, B., Monteiro, S.N., Peng, Z., and Zhang, M.(ed.) Characterization of minerals, metals, and materials 2014, John Wiley & Sons, Ltd., Hoboken, New Jersey, p.173-184.