Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.26
no.6
/
pp.633-641
/
2008
This study introduces the method of detecting and restoring occlusion areas by using epipolar algorithm and K-means classification algorithm for true ortho-photo generation. In the past, the techniques of detecting occlusion areas are using the reference images or information of buildings. But, in this study the occlusion areas can be automatically detected by using DTM data and exterior orientation parameters. The detected occlusion areas can be restored by using anther images or the computed values which are determined in K-means classification algorithm. In addition, this method takes advantages of applying epipolar algorithm in order to find same location in overlapping areas among images.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.28
no.1
/
pp.83-92
/
2010
Emergence of high-resolution digital aerial cameras and airborne laser scanners have made innovative progress in photogrammetry and spatial information technology. The purpose of this study is to generate true orthoimage by recovering occlusion areas. The orthoimages were generated patch-based transformation. The occlusion areas were mutually corrected by using multiple aerial images. This study proposed a novel method of building roof based orthoimage generation and an effective method of occlusion area detection and recovery. The proposed methods could be efficient to generate true orthoimages in urban areas where occlusion areas are problematic.
레이저 프로파일링 시스템의 등장으로, 기존에는 얻을 수 없었던 도시 지역에 대한 DTM 취득이 가능해졌고, 더욱 정확한 정사투영영상 또한 제작할 수 있게 되었다. 하지만, 높이 변화를 보이는 자연지물과 인공구조물이 있는 지역에 대해 기존의 정사투영사진 제작기법이 적용될 때, 폐색이나 이중매핑과 같은 문제가 발생하게 된다. 특히 고층건물이 밀집되어 있는 도심지에서 이러한 현상은 두드러져 정사투영영상의 품질을 저해하는 주요한 원인이 된다. 따라서, 본 연구에서는 카메라의 외부표정요소와 DTM을 이용하여 폐색영역을 탐지하고, 폐색이 안된 다른 영상의 정보를 통해 폐색영역을 복원하여 더욱 완전한 정사투영을 제작할 수 있는 알고리즘을 제안하였다. 제안된 알고리즘에 의해 자연지물이나 인공고조물에 의한 폐색영역을 탐지할 수 있었고 폐색영역의 많은 부분을 부가영상을 이용하여 복원하였다. 건물에 대한 사전지식을 이용하여 폐색영역을 탐지하는 국내 연구가 있지만, 본 연구는 건물에 대한 부가정보나 모델링을 사용하지 않고 DTM과 카메라 외부표정요소만을 이용하여 폐색영역을 탐지한다는 점에서 이러한 연구들과 차별성을 가진다.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.18
no.1
/
pp.51-57
/
2000
With the emergence of laser mapping systems, higher resolution DTM of urban area can be acquired and can be used to generate precise orthoimage. But, when the conventional orthoimage generation methods are applied to the area containing features with height difference such as cliffs, bridges, banks. elevated highways and buildings, they cause problems such as occlusion and double mapping. Therefore, this study proposes a new algorithm by modifying and refining conventional orthoimage generation methods. With this algorithm, areas which have occlusion are detected from the base image using camera orientation parameters and DTM. Also, detected areas are restored using alternative images which does not have occlusion in that area. This study can be distinguished from the other studies in the aspects that the proposed algorithm in this paper doesn't need information on building and that uses DTM data and orientation parameters.
Kim, Hye-Jin;Han, You-Kyung;Choi, Jae-Wan;Kim, Yong-Il
Proceedings of the KSRS Conference
/
2009.03a
/
pp.13-17
/
2009
고해상도 위성영상의 분류 기술은 최근 가장 활발히 연구되고 있는 분야 중 하나로 텍스쳐(texture), NDVI, PCA 영상 등 다양한 전처리 정보들을 추출하고 이를 멀티스펙트럴 밴드와 조합하여 분류 정확도를 높이는 기술을 개발하는 연구들이 주를 이루고 있다. 고해상도 위성영상에서 건물의 그림자와 옆벽면의 폐색 지역은 개체 추출 및 분류를 방해하는 주된 요인이 되며, 다양한 형태와 분광특성을 갖는 개개의 건물은 자동 분류 과정을 통해 제대로 식별되지 않는다는 한계를 갖는다. 이에 본 연구에서는 KOMPSAT-2 단영상으로부터 효율적으로 건물 정보 및 토지피복을 분류하기 위하여, 추출된 건물 정보를 바탕으로 건물의 그림자와 폐색지역을 보정한 후 비건물 지역에 대한 분류를 수행하여 분류 정확도를 높이고자 하였다. 우선 삼각벡터구조 기반의 반자동 인터페이스를 이용하여 건물의 3차원 모델 및 그림자 영역을 추출하고 이로부터 추출된 그림자 영역을 효과적으로 보정하기 위해 반복 선형회귀 연산을 이용한 그림자 보정을 수행한 후 inpainting 기법을 건물 폐색영역 복원에 적용하여 영상의 품질을 향상시켰다. 이러한 과정을 통해 도심 지역의 영상 분석에 있어 가장 큰 오차를 일으키는 인공물의 그림자와 폐색에 의한 오차를 최소화한 후 분류에 적용하여 이를 보정 전 영상을 이용한 분류 결과와 비교하였다.
고해상도 위성영상의 관측시, 위성센서는 보통 지표면으로부터 어느정도의 기울기를 갖는 상태에서 촬영이 되기 때문에 영상 내에서 건물은 지표면에 누워있는 형태로 나타나게 된다. 때문에 건물의 옆벽면 및 지붕에 의해 지표의 일부가 가려지게 되는데 이를 건물에 의한 폐색영역이라 한다. 이러한 폐색영역은 건물의 기복오차가 제거된 정사영상에서는 검게 비어있는 상태로 남게 되며 시각적으로나 영상판독시 불편을 초래하여 위성영상을 베이스 맵으로 사용하기 어렵게 하는 요인이 된다. 이러한 폐색영역을 보정하기 위해서는 일반적으로 동일 영역에 대한 두 장 이상의 영상을 이용하여 폐색 지역을 채워넣는 작업을 수행하나, 이 방법은 위성영상 구입 및 처리 비용에 대한 부담이 커 실제로 자주 사용되지 못 한다. 본 연구에서는 고해상도 위성 단영상의 건물에 의한 폐색영역에, 주변 화소값들의 분광 및 기하학적 특성을 이용하여 복원하는 기술인 inpainting 기법을 적용하여 그 보정 결과를 평가하고 활용 가능성을 검증해보고자 한다.
Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
/
2003.10a
/
pp.237-242
/
2003
During the past, digital orthophoto is generated for rural area or low resolution image, because the accurate extraction of DEM is difficult for urban area. But, nowadays, high resolution DEM by ALS system starts to become available for urban area, so the importance of large scale digital orthophoto generation becomes increasing. In this paper, we propose and describe effective algorithm for detecting occlusion area and not only restoring occlusion area but also processing null pixels by occlusion area for minimizing the heterogeneity of digital orthophoto. With proposed algorithm, we detected occlusion area due to height of structures such as buildings, bridges, etc, and restored occlusion area using reference image. Also, The homogeneity of generated digital orthophoto was improved by using brightness correction.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.40
no.3
/
pp.177-185
/
2022
A method of restoring the occluded area was proposed by referring to images taken with the same types of sensors on high-resolution optical satellite images through deep learning. For the natural continuity of the simulated image with the occlusion region and the surrounding image while maintaining the pixel distribution of the original image as much as possible in the patch segmentation image, CycleGAN (Cycle Generative Adversarial Network) method with ConvNeXt block applied was used to analyze three experimental regions. In addition, We compared the experimental results of a training patch size of 512*512 pixels and a 1024*1024 pixel size that was doubled. As a result of experimenting with three regions with different characteristics,the ConvNeXt CycleGAN methodology showed an improved R2 value compared to the existing CycleGAN-applied image and histogram matching image. For the experiment by patch size used for training, an R2 value of about 0.98 was generated for a patch of 1024*1024 pixels. Furthermore, As a result of comparing the pixel distribution for each image band, the simulation result trained with a large patch size showed a more similar histogram distribution to the original image. Therefore, by using ConvNeXt CycleGAN, which is more advanced than the image applied with the existing CycleGAN method and the histogram-matching image, it is possible to derive simulation results similar to the original image and perform a successful simulation.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.38
no.6
/
pp.655-661
/
2020
SGM (Semi Global Matching) can be used to find all the conjugate points between stereo images. Therefore, it enables high-density DSM (Digital Surface Model) production from high-resolution satellite images. However, water, shadows, and occlusion areas cause mismatching of the surrounding points in this method. Particularly, in buildings with large-parallax and elongated-shapes such as a Korean style apartment, it is difficult to reconstruct the 3D building even if the SGM method is applied to a high-resolution 50cm satellite image. This study proposed and performed the SGM technique with a classified image and an edge image from the IKONOS-2 satellite stereo-image with a 1m resolution to produce DSM. It was compared with the DSMs from the general SGM and the high-density ABM (Area Based Matching) matching of ERDAS software. The results of the apartment DSM by the proposed method were the best in the test area. As a result, despite the image having a resolution of 1m, the outline of the building DSM could be expressed more clearly than the existing method.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.38
no.4
/
pp.363-373
/
2020
During last decades numerous studies generating orthoimage have been carried out. Traditional methods require exterior orientation parameters of aerial images and precise 3D object modeling data and DTM (Digital Terrain Model) to detect and recover occlusion areas. Furthermore, it is challenging task to automate the complicated process. In this paper, we proposed a new concept of true orthoimage generation using DL (Deep Learning). DL is rapidly used in wide range of fields. In particular, GAN (Generative Adversarial Network) is one of the DL models for various tasks in imaging processing and computer vision. The generator tries to produce results similar to the real images, while discriminator judges fake and real images until the results are satisfied. Such mutually adversarial mechanism improves quality of the results. Experiments were performed using GAN-based Pix2Pix model by utilizing IR (Infrared) orthoimages, intensity from LiDAR data provided by the German Society for Photogrammetry, Remote Sensing and Geoinformation (DGPF) through the ISPRS (International Society for Photogrammetry and Remote Sensing). Two approaches were implemented: (1) One-step training with intensity data and high resolution orthoimages, (2) Recursive training with intensity data and color-coded low resolution intensity images for progressive enhancement of the results. Two methods provided similar quality based on FID (Fréchet Inception Distance) measures. However, if quality of the input data is close to the target image, better results could be obtained by increasing epoch. This paper is an early experimental study for feasibility of DL-based true orthoimage generation and further improvement would be necessary.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.