• Title/Summary/Keyword: 평형 온도

Search Result 744, Processing Time 0.026 seconds

Dual Sorption of Orange II by Silk Fibroin (견섬유에 대한 Orange II의 이원 수착)

  • 탁태문
    • Journal of Sericultural and Entomological Science
    • /
    • v.24 no.2
    • /
    • pp.81-84
    • /
    • 1983
  • The equilibrium sorption of Orange II by silk fibroin in the range of 50$^{\circ}$, 70$^{\circ}$, 90$^{\circ}C$ and to pH 1.5, 2.2, and 4.0 have been discussed in the light of the dual sorption. Langmuir sorption constant K$\_$L/ and partition coefficient K$\_$P/ were decreased with the increase of the temperature and the pH for the dyeing of silk fibroin with Orange II. Positive values for adsorption entropy were observed. It was found that the values of $\Delta$H$^{\circ}$ is negative for dyeing conditions, and the dyestuff/fibre reaction is therefore exothermic.refore exothermic.

  • PDF

Comparison of Sorption Characteristics of Several Soybean Varieties (콩 품종별 흡습특성 비교)

  • Kim, Dong-Hee;Yum, Cho-Ae;Kim, Woo-Jung
    • Applied Biological Chemistry
    • /
    • v.33 no.1
    • /
    • pp.14-17
    • /
    • 1990
  • Seven varieties of soybeans(Paldal, Danyeob, Jangbaek, Baegun, Jangyeob and 2 cultivars of Local 1 and Local 2) were investigated to compare the sorption characteristics during storage of various relative humidities. The sorption isotherm curve determined at RH range of $33{\sim}92\;%$ and $4^{\circ}C$ and $25^{\circ}C$ showed that moisture contents of soybeans was higher at $4^{\circ}C$ than those values at $25^{\circ}C$ for overall water activities of 0.33{\sim}0.92$. The Paldal was the highest moisture content at $4^{\circ}C$ while that value of Baegun was the highest at $25^{\circ}C$. The change in moisture content with storage time was expressed by log(dw/dt)=b log(t)+log a and the value of (dw/dt)${\times}10^3$ was decreased logarithmically. The Paldal was comparatively the highest initial absorption rate and the value of -b in seven varieties decreased as the relative humidity increased from 33 % to 92 %.

  • PDF

Study on Absorption Characteristics of $CO_2$ in Aqueous Alkanolamine Solutions (알카놀아민 수용액을 이용한 이산화탄소 흡수특성 연구)

  • Oh, Sang-Kyo;Rhee, Young-Woo;Nam, Sung-Chan;Yoon, Yeo-Il;Kim, Young-Eun
    • Journal of Energy Engineering
    • /
    • v.17 no.4
    • /
    • pp.241-246
    • /
    • 2008
  • Increase of $CO_2$ by using fossil fuels makes mainly global warming and the international efforts to reduce the $CO_2$ emission is being promoted. Absorption process using aqueous alkanolamine solution to remove acid components in the mixed gases has been used commercially. This method was used to remove $CO_2$ in the flue gas in recent years. $CO_2$ Absorption characteristics of several aqueous alkanolamine solutions such as MEA, DEA and AMP was studied by measuring vapor-liquid-equilibrium(VLE) and absorption velocity in this study. VLE measuring equipment, shell and reactor type, was used to acquire VLE data, equilibrium $CO_2$ pressure(${P_{CO_2}}^*$) and time at each pulse gas input. We also acquired the $CO_2$ absorption velocity by measuring the time to arrive the VLE at $40{\sim}80^{\circ}C$ and first gas input. The $CO_2$ absorption capacity of MEA 10wt% solution was higher than two alkanolamine solutions at $40^{\circ}C$ and the equilibrium $CO_2$ loading was 0.5. Absorption capacity was excellent as follows; AMP>DEA>MEA. But absorption velocity was fast as follows; MEA>AMP>DEA. Though good absorbent was considered by many variables, absorption velocity and capacity was more important factor.

A Thermodynamic Study on Thermochromism of Blue Dye Systems (Blue 계열 염료의 열변색 현상에 관한 열역학적 연구)

  • Kim, Jae-Uk;Ji, Myoung-Jin;Cha, Byung-Kwan;Kim, Jong-Gyu
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.5
    • /
    • pp.500-505
    • /
    • 2010
  • Two different dyes containing the same molecular weight but different chemical structure have been utilized for the study of thermodynamic parameters. In this study, {3-(4-(diethylamino)phenyl)-3-(1-ethyl-2-methyl-1H-indol-3-yl)isobenzofuran-1(3H)-one} (Blue 502) and {3-(4-(diethylamino)-2-methylphenyl)-3-(1,2-dimethyl-1H-indol-3-yl)isobenzofuran-1(3H)-one} (Blue 402) were used. It has been performed by measuring UV spectra of the two dyes. In general, the blue shift has been observed from both dyes in higher carbon number alcohol solvents. Interestingly, Blue 502 showed higher stability than Blue 402 in the same conditions used in this study. And, the equilibrium constants (0.9~1.0) of the dyes depending upon temperature change were also calculated using UV absorbance. The standard enthalpy calculated from equilibrium constants and molar absorptivity($\varepsilon$) are 10.94 kJ/mol in Blue 402 and 9.010 kJ/mol in Blue 502, respectively.

Adsorption Characteristics of Brilliant Green by Coconut Based Activated Carbon : Equilibrium, Kinetic and Thermodynamic Parameter Studies (야자계 입상 활성탄에 의한 brilliant green의 흡착 특성 : 평형, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.25 no.3
    • /
    • pp.198-205
    • /
    • 2019
  • The adsorption equilibrium, kinetic, and thermodynamic parameters of brilliant green adsorbed by coconut based granular activated carbon were determined from various initial concentrations ($300{\sim}500mg\;L^{-1}$), contact time (1 ~ 12 h), and adsorption temperature (303 ~ 323 K) through batch experiments. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin, Harkins-Jura, and Elovich isotherm models. The estimated Langmuir dimensionless separation factor ($R_L=0.018{\sim}0.040$) and Freundlich constant ($n^{-1}=0.176{\sim}0.206$) show that adsorption of brilliant green by activated carbon is an effective treatment process. Adsorption heat constants ($B=12.43{\sim}17.15J\;mol^{-1}$) estimated by the Temkin equation corresponded to physical adsorption. The isothermal parameter ($A_{HJ}$) by the Harkins-Jura equation showed that the heterogeneous pore distribution increased with increasing temperature. The maximum adsorption capacity by the Elovich equation was found to be much smaller than the experimental value. The adsorption process was best described by the pseudo second order model, and intraparticle diffusion was a rate limiting step in the adsorption process. The intraparticle diffusion rate constant increased because the dye activity increased with increases in the initial concentration. Also, as the initial concentration increased, the influence of the boundary layer also increased. Negative Gibbs free energy ($-10.3{\sim}-11.4kJ\;mol^{-1}$), positive enthalpy change ($18.63kJ\;mol^{-1}$), and activation energy ($26.28kJ\;mol^{-1}$) indicate respectively that the adsorption process is spontaneous, endothermic, and physical adsorption.

Horizontal 2-D Finite Element Model for Analysis of Mixing Transport of Heat Pollutant (열오염 혼합 거동 해석을 위한 수평 2차원 유한요소모형)

  • Seo, Il Won;Choi, Hwang Jeong;Song, Chang Geun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6B
    • /
    • pp.507-514
    • /
    • 2011
  • A numerical model has been developed by employing a finite element method to simulate the depth-averaged 2-D dispersion of the heat pollutant, which is an important pollutant material in natural streams. Among the finite element methods, the Streamline Upwind/Petrov Galerkin (SUPG) method was applied. Also both linear and quadratic elements can be applied so that irregular river boundaries can be easily represented. To show the movement of heat pollutants, the reaction term describing heat transfer was represented as an equation in which sink/source term is proportional to the difference between the equilibrium temperature and water surface temperature. The equation was expressed so that the water surface temperature changes according to the temperature transfer coefficient and the equilibrium temperature. For the calibration of the model developed, analytic and numerical results from a case of rectangular channel with full width continuous injection have been compared in a steady state. The comparisons showed that the numerical results were in good agreement with analytical solutions. The application site was selected from the downstream of Paldang dam to Jamsil submerged weir, and overall length of this site is about 22.5 km. The change of water temperature caused by the discharge from the Guri sewage treatment plant has been simulated, and results were similar to the observed data. Overall it is concluded that the developed model can represent the water temperature changes due to heat transport accurately. But the verification using observed data will further enhance the validity of the model.

Equilibrium, Kinetics and Thermodynamic Parameters Studies on Metanil Yellow Dye Adsorption by Granular Activated Carbon (입상활성탄에 의한 메타닐 옐로우 염료의 흡착에 대한 평형, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong-Jib
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.96-102
    • /
    • 2014
  • Adsorption of metanil yellow onto granular activated carbon were studied in a batch system. Various operation parameters such as adsorbent dosage, pH, initial concentration, contact time and temperature were optimized. Experimental equilibrium adsorption data were analyzed by Langmuir and Freundlich adsorption isotherm. The equilibrium process was described well by Freundlich isotherm model. From determined separation factor (1/n), adsorption of metanil yellow by granular activated carbon could be employed as effective treatment method. By analysis of kinetic experimental data, the adsorption process were found to confirm to the pseudo second order model with good correlation and the adsorption rate constant ($k^2$) decreased with increasing initial concentration. Thermodynamic parameters like activation energy, change of free energy, enthalpy, and entropy were also calculated to predict the nature adsorption in the temperature range of 298~318 K. The activation energy was determined as 23.90 kJ/mol. It was found that the adsortpion of metanil yellow on the granular activated carbon was physical process. The negative Gibbs free energy change (${\Delta}G=-2.16{\sim}-6.55kJ/mol$) and the positive enthalpy change (${\Delta}H=+23.29kJ/mol$) indicated the spontaneous and endothermic nature of the adsorption process, respectively.

Characteristics of Equilibrium, Kinetic and Thermodynamic for Adsorption of Acid Blue 40 by Activated Carbon (활성탄에 의한 Acid Blue 40 흡착에 있어서 평형, 동력학 및 열역학적 특성)

  • Lee, Jong Jib
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.592-599
    • /
    • 2018
  • The kinetics and thermodynamics of the adsorption of acid blue 40 from an aqueous solution by activated carbon were examined as a function of the activated carbon dose, pH, temperature, contact time, and initial concentration. The adsorption efficiency in a bathtub was increased at pH 3 and pH 11 due to the presence of sufonate ions ($SO_3{^-}$) and amine ions ($NH_2{^+}$). The equilibrium adsorption data were fitted to the Langmuir, Freundlich and Temkin isotherms. The results indicated that the Langmuir model provides the best correlation of the experimental data. The separation factor of the Langmuir and Freundlich model showed that the adsorption treatment of acid blue 40 by activated carbon could be an effective adsorption process. The adsorption energy determined by the Temkin equation showed that the adsorption step is a physical adsorption process. Kinetics analysis of the adsorption process of acid blue 40 on activated carbon showed that a pseudo second order kinetic model is more consistent than a pseudo second order kinetic model. The estimated activation energy was 42.308 kJ/mol. The enthalpy change (80.088 J/mol) indicated an endothermic process. The free energy change (-0.0553 ~ -5.5855 kJ/mol) showed that the spontaneity of the process increased with increasing adsorption temperature.

Characteristics of Equilibrium, Kinetics, and Thermodynamics for Adsorption of Acid Black 1 Dye by Coal-based Activated Carbon (석탄계 활성탄에 의한 Acid Black 1 염료의 흡착에 있어서 평형, 동력학, 및 열역학적 특성)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.261-268
    • /
    • 2021
  • Equilibrium, kinetics, and thermodynamics of adsorption of acid black 1 (AB1) by coal-based granular activated carbon (CGAC) were investigated with the adsorption variables of initial concentration of dye, contact time, temperature, and pH. The adsorption reaction of AB1 by activated carbon was caused by electrostatic attraction between the surface (H+) of activated carbon and the sulfite ions (SO3-) and nitrite ions (NO2-) possessed by AB1, and the degree of reaction was highest at pH 3 (97.7%). The isothermal data of AB1 were best fitted with Freundlich isotherm model. From the calculated separation factor (1/n) of Freundlich, it was confirmed that adsorption of AB1 by activated carbon could be very effective. The heat of adsorption in the Temkin model suggested a physical adsorption process (< 20 J mol-1). The kinetic experiment favored the pseudo second order model, and the equilibrium adsorption amount estimated from the model agreed to that given by the experiments (error < 9.73% ). Intraparticle diffusion was a rate controlling step in this adsorption process. From the activation energy and enthalpy change, it was confirmed that the adsorption reaction is an endothermic reaction proceeding with physical adsorption. The entropy change was positive because of an active reaction at the solid-liquid interface during adsorption of AB1 on the activated carbon surface. The free energy change indicated that the spontaneity of the adsorption reaction increased as the temperature increased.

Factors Affecting Hydration Rate of Black Soybeans (검정콩의 흡수속도(吸水速度)에 미치는 영향인자)

  • Kim, Woo-Jung;Shin, Ea-Sook;Kim, Chong-Kun;Yang, Cha-Bum
    • Korean Journal of Food Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.41-44
    • /
    • 1985
  • Dried black soybeans were soaked in water at the temperature range of $4^{\circ}C-100^{\circ}C$ and in the solution having various concentration of salt and sugar, in order to investigate their effects on water absorption characteristics. The hydration rate was determined by the method of weight gain during soaking. The times required to reach specified degrees of hydration were reduced logarithmically by increase of temperature, with showing a break point in their Z-values at $60^{\circ}C$. The temperature effect on hydrations of black soybeans was higher at the temperature below $60^{\circ}C$. Increase of NaCl or sucrose concentration in soaking solution reduced the hydration rate. The Z-values were changed at the concentration of 25% for sucrose and 16% for NaCl. The activation energy for hydration of 30%-50% was found to be 5.7-7.2Kcal/mole. The higher activation energy was required to reach higher degree of hydration.

  • PDF