• Title/Summary/Keyword: 평형모델

Search Result 630, Processing Time 0.027 seconds

A Study on Counselor's Selfobject Role for Pathological Narcissism (병리적 나르시시즘에 대한 상담자의 자기대상 역할 연구)

  • Yoon, Seok-Min
    • Industry Promotion Research
    • /
    • v.7 no.4
    • /
    • pp.45-52
    • /
    • 2022
  • Based on the Kohut's theory, this study carries out an investigation into the counselor's self object role in pathological narcissism. The theological understandings deal with narcissism, pathology, and self object. Narcissism and pathology can be seen as the failure of the formation of cohesive self. Early infant self, by feeling proper sympathy and love, usually forms integrated cohesive self. In other words, narcissistic personalities, when failing to receive sympathy and accommodation, can result in forming helpless and vulnerable self, which is filled with resentment. In addition, narcissistic characters are afraid of the world and maintain the grandiose image of self to protect themselves from feeling helplessness and emptiness. On the other hand, when they experience accommodation and admiration provided by self object, they can strengthen the image of grandiose self and demonstrate creative abilities as well. An infant remains as a fragmented self, when his or her relationship experience with self object is to be damaged. This study suggests the following conclusions: The counselor's self object role for pathological narcissism should be sympathetic self object so that the counselee will be able to form his or her own healthy cohesive self. Additionally, self object should play a kind role to guide infant desires for ideal models, which eventually help infants to pursue healthy ideas and maintain early states of narcissistic balances.

Matter and Becoming in Gilbert Simondon's Theory of Individuation (물질과 생성: 질베르 시몽동의 개체화론을 중심으로)

  • Kim, Jaehee
    • Journal of Korean Philosophical Society
    • /
    • no.93
    • /
    • pp.231-260
    • /
    • 2011
  • Simondon's theory of individuation and methodology of transduction presents a possibility of contemporary natural philosophy and a new perspective about the relation between philosophy and sciences. According to Simondon's anti-substantial viewpoint, being, as a metastable system charged with potential energy, complicates itself with quantum leaps transversing successive equilibriums. Individuation is the becoming of phases of being which transits from preindividual state to individuated states. Physical individuation as a paradigmatic model of individuation in general demonstrates not only insufficiency of form-oriented hylomorphism, but also spontaneous formational capacity of matter and reality of energetic relational operation immanent in matter. Genesis of a individual (structure or form) occurs as a resolution of the disparation between orders of magnitude, that is, the difference of potentials immanent in nature through the internal resonance, communication by information, transductive relation between the opposites. I'm trying to show that Simondon revives 'physis' of ancient natural philosophy by his own transductive applications of contemporary physics' conceptions, and therefore suggest a new non-reductive materialism. Especially Simondon's 'transduction' which is neither induction, deduction, nor dialectic, but an original ontological process and a peculiar method of thinking, I think, is worthy of note in order to construct network of knowledge and inter-relation between various sciences.

Gold Recovery from Cyanide Solution through Biosorption, Desorption and Incineration with Waste Biomass of Corynebacterium glutamicum as Biosorbent (생체흡착, 탈착 및 회화를 이용한 시안 용액으로부터 금의 회수)

  • Bae, Min-A;Kwak, In-Seob;Won, Sung-Wook;Yun, Yeoung-Sang
    • Clean Technology
    • /
    • v.16 no.2
    • /
    • pp.117-123
    • /
    • 2010
  • In this study, we propose two methods able to recover different type of gold from gold-cyanide solutions: biosorption and desorption process for mono-valent gold recovery and biosorption and incineration process for zero-valent gold recovery. The waste bacterial biomass of Corynebacterium glutamicum generated from amino acid fermentation industry was used as a biosorbent. The pH edge experiments indicated that the optimal pH range was pH 2 - 3. From isothermal experiment and its fitting with Langmuir equation, the maximum uptake capacity of Au(I) at pH 2.5 were determined to be 35.15 mg/g. Kinetic tests evidenced that the process is very fast so that biosorption equilibrium was completed within the 60 min. To recover Au(I), the gold ions were able to be successfully eluted from the Au-loaded biosorbent by changing the pH to pH 7 and the desorption efficiency was 91%. This indicates that the combined process of biosorption and desorption would be effective for the recovery of Au(I). In order to recover zero-valent gold, the Au-loaded biosorbents were incinerated. The content of zero-valent gold in the incineration ash was as high as 85%. Therefore, we claim on the basis of the results that two suggested combined processes could be useful to recover gold from cyanide solutions and chosen according to the type of gold to be recovered.

Separation of Vanadium and Tungsten from Simulated Leach Solutions using Anion Exchange Resins (음이온교환 수지를 이용한 바나듐/텅스텐 혼합용액으로부터 바나듐/텅스텐 분리회수에 관한 연구)

  • Jong Hyuk Jeon;Hong In Kim;Jin Young Lee;Rajesh Kumar Jyothi
    • Resources Recycling
    • /
    • v.31 no.6
    • /
    • pp.25-35
    • /
    • 2022
  • The adsorption/desorption behavior and separation conditions of vanadium and tungsten ions were investigated using a gel-type anion-exchange resin. In the adsorption experiment with the initial acidity of the solution, the adsorption rate of vanadium was remarkably low in strong acids and bases. Additionally, the adsorption rate of tungsten was low in a strong base. An increase in the reaction temperature increased the adsorption reaction rate and maximum adsorption. The effect of tungsten on the maximum adsorption was minimal. The adsorption isotherms of vanadium and tungsten on the ion-exchange resin were suitable for the Langmuir adsorption isotherms of both the ions. For tungsten, the adsorption isotherms of vanadium and tungsten were polyoxometalate. Both ion-exchange resins were simulated using similar quadratic reaction rate models. Vanadium was desorbed in the aqueous solutions of HCl or NaOH, the desorption characteristics of vanadium and tungsten depended on the desorption solution, and tungsten was desorbed in the aqueous solution of NaOH. It was possible to separate the two ions using the desorption process. The desorption reaction reached equilibrium within 30 min, and more than 90% recovery was possible.

The Copper Adsorption onto Hwangto Suspension from Pankok-ri, Kosung-gun (경남 고성군 판곡리 황토 현탁액의 구리 흡착 특성)

  • Cho Hyen Goo;Park Sooja;Choo Chang Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.209-220
    • /
    • 2004
  • Adsorption behavior of Cu onto Hwangto, from Pankok-ri, Kosung-gun, suspension was studied using Cu batch adsorftion experiment and computer program MINTEQA2 and FITEQL 3.2. The sorption of copper was investigated as a function of pH, copper concentration and $NaNO_3$ background concentration (0.01 and 0.1 M). The concentration of copper was analyzed using ICP-AES. The sorption of copper onto Hwangto suspension increased with increasing pH and copper concentration. The adsorption percentage of copper drastically increased from pH 5.5 to 6.5, and reached nearly 100% at pH 7.5. Because the amount of copper solution and the ionic strength of background electrolyte may not affect the sorption of copper onto Hwangto, the copper ion may be combined at the surface of Hwangto as an inner-sphere complex. Using the MINTEQA2 program, the speciation of copper was calculated as a function of pH and copper concentration. The concentration of $Cu^{2+}$ decreased and that of $Cu(OH)_2$ increased with increasing pH. The uptake of copper in the Hwangto suspension was simulated by FITEQL3.2 program using two sites-three pKas model, which is composed of silicate reaction site and Fe oxide reaction site. The copper absorption reaction constants were calculated in the case of 2~6 mL of copper solution. The Fe oxide reaction site rapidly adsorbs copper ion between pH 4.5~6.5. Silicate reaction site adsorbs little copper ion at low copper concentration but much at high copper concentration. The removal amount of copper by precipitation was negligible in comparison with that of adsorption. The Fe oxide reaction site may has higher adsorption affinity of copper ion than silicate reaction site.

Adsorption of Arsenic on Goethite (침철석(goethite)과 비소의 흡착반응)

  • Kim, Soon-Oh;Lee, Woo-Chun;Jeong, Hyeon-Su;Cho, Hyen-Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.177-189
    • /
    • 2009
  • Iron (oxyhydr)oxides commonly form as secondary minerals of high reactivity and large surface area resulting from alteration and weathering of primary minerals, and they are efficient sorbents for inorganic and organic contaminants. Accordingly, they have a great potential in industrial applications and are also of substantial interest in environmental sciences. Goethite (${\alpha}$-FeOOH) is one of the most ubiquitous and stable forms of iron (oxyhydr)oxides in terrestrial soils, sediments, and ore deposits, as well as a common weathering product in rocks of all types. This study focused on adsorption reaction as a main mechanism in scavenging arsenic using goethite. Goethite was synthesized in the laboratory to get high purity, and a variety of mineralogical and physicochemical features of goethite were measured and related to adsorption characteristics of arsenic. To compare differences in adsorption reactions between arsenic species, in addition, a variety of experiments to acquire adsorption isotherm, adsorption edges, and adsorption kinetics were accomplished. The point of zero charge (PZC) of the laboratory-synthesized goethite was measured to be 7.6, which value seems to be relatively higher, compared to those of other iron (oxyhydr)oxides. Its specific surface area appeared to be $29.2\;m^2/g$ and it is relatively smaller than those of other (oxyhydr)oxides. As a result, it was speculated that goethite shows a smaller adsorption capacity. It is likely that the affinity of goethite is much more larger for As(III) (arsenite) than for As(V) (arsenate), because As(III) was observed to be much more adsorbed on goethite than As(V) in equivalent pH conditions. When the adsorption of each arsenic species onto goethite was characterized in various of pH, the adsorption of As(III) was largest in neutral pH range (7.0~9.0) and decreased in both acidic and alkaline pH conditions. In the case of As(V), the adsorption appeared to be highest in the lowest pH condition, and then decreased with an increase of pH. This peculiarity of arsenic adsorption onto goethite might be caused by macroscopic electrostatic interactions due to variation in chemical speciation of arsenic and surface charge of goethite, and also it is significantly affected by change in pH. Parabolic diffusion model was adequate to effectively evaluate arsenic adsorption on goethite, and the regression results show that the kinetic constant of As(V) is larger than that of As(III).

The Role of Pulmonary Capillary Pressure in the Oxygen Free Radical-Induced Acute Lung Injury (산소기에 의한 급성 폐손상에서 폐모세혈관압의 역할에 관한 연구)

  • Yoo, Chul-Gyu;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo;Kim, Keun-Youl;Han, Yong-Chol
    • Tuberculosis and Respiratory Diseases
    • /
    • v.39 no.6
    • /
    • pp.474-483
    • /
    • 1992
  • Background: Regardless of its causes, acute lung injury is characterized pathophysiologically by increased pulmonary arterial pressure and the protein-rich edema. Many inflammatory mediators are known to be involved in the pathogenesis of acute lung injury, including oxygen free radicals (OFR). But the changes in pulmonary capillary pressure in the OFR-induced acute lung injury is not clear. While the pulmonary edema characterized by the movement of fluid and solutes is dependent on the pressure gradient and the alveolar-capillary permeability, the role of pulmonary capillary pressure in the development of pulmonary edema is also not well understood. Method: Male Sprague-Dawley rats were divided into 5 groups: normal control (n=5), xanthine/xanthine oxidase (X/XO)-treated group (n=7), catalase-pretreated group (n=5), papaverine-pretreated group (n=7), and indomethacin-pretreated group (n=5). In isolated perfused rat lungs, the sequential changes in pulmonary arterial pressure, pulmonary capillary pressure by double occlusion method, and lung weight as a parameter of pulmonary edema were determined. Results: Pulmonary arterial pressure and pulmonary capillary pressure were increased by X/XO. This increase was significantly attenuated by catalase and papaverine, but indomethacin did not prevent the X/XO-induced increase. Lung weight gain was also observed by X/XO perfusion. It was prevented by catalase. Papaverine did not completely block the increase, but significantly delayed the onset. Indomethacin had no effect on the increase in lung weight. Conclusion: These data suggest that increased pulmonary capillary pressure by OFR may aggravate pulmonary edema in the presence of increased alveolar-capillary permeability and this may not be mediated by cyclooxygenase metabolites.

  • PDF

Seed and water absorption characteristics of red bean cultivars in Korea (국내산 팥의 품종별 종실 및 수분흡수 특성)

  • Oh, Seon-Min;Jo, Young-Je;Chun, Areum;Kwak, Jieun;Oh, You-Geun;Kim, Mi-Jung;Song, Suk-Bo;Choi, Induck
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.5
    • /
    • pp.607-612
    • /
    • 2021
  • This study investigated the seed and water absorption characteristics of red bean cultivars in Korea. The length and width of all seeds were 7.74-8.99 mm and 5.33-5.54 mm, respectively. The hilum lengths and widths were 3.21-4.01 mm and 0.58-0.73 mm, respectively. The weight of 100 seeds was 12.14-20.21 g, and the seed coat thickness of red beans ranged from 39.18-50.01 mm. During soaking for 30 h, red beans exhibited a lag phase in the initial soaking time, followed by a rapid absorption phase, and finally contained more than 130% moisture. When water absorption was applied to the sigmoid equation, the curve fitting exhibited a high R2, and the kinetics of water absorption were 0.202-0.715 h-1, which differed among varieties. Pearson's correlation of hilum width (r=0.7858*) and seed thickness (r= -0.9954***) exhibited strong correlations with water absorption, suggesting that these are important factors in red bean processing.

The Effect of the Surfactant on the Migration and Distribution of Immiscible Fluids in Pore Network (계면활성제가 공극 구조 내 비혼성 유체의 거동과 분포에 미치는 영향)

  • Park, Gyuryeong;Kim, Seon-Ok;Wang, Sookyun
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.105-115
    • /
    • 2021
  • The geological CO2 sequestration in underground geological formation such as deep saline aquifers and depleted hydrocarbon reservoirs is one of the most promising options for reducing the atmospheric CO2 emissions. The process in geological CO2 sequestration involves injection of supercritical CO2 (scCO2) into porous media saturated with pore water and initiates CO2 flooding with immiscible displacement. The CO2 migration and distribution, and, consequently, the displacement efficiency is governed by the interaction of fluids. Especially, the viscous force and capillary force are controlled by geological formation conditions and injection conditions. This study aimed to estimate the effects of surfactant on interfacial tension between the immiscible fluids, scCO2 and porewater, under high pressure and high temperature conditions by using a pair of proxy fluids under standard conditions through pendant drop method. It also aimed to observe migration and distribution patterns of the immiscible fluids and estimate the effects of surfactant concentrations on the displacement efficiency of scCO2. Micromodel experiments were conducted by applying n-hexane and deionized water as proxy fluids for scCO2 and porewater. In order to quantitatively analyze the immiscible displacement phenomena by n-hexane injection in pore network, the images of migration and distribution pattern of the two fluids are acquired through a imaging system. The experimental results revealed that the addition of surfactants sharply reduces the interfacial tension between hexane and deionized water at low concentrations and approaches a constant value as the concentration increases. Also it was found that, by directly affecting the flow path of the flooding fluid at the pore scale in the porous medium, the surfactant showed the identical effect on the displacement efficiency of n-hexane at equilibrium state. The experimental observation results could provide important fundamental information on immiscible displacement of fluids in porous media and suggest the potential to improve the displacement efficiency of scCO2 by using surfactants.

A Study of Fluoride and Arsenic Adsorption from Aqueous Solution Using Alum Sludge Based Adsorbent (알럼 슬러지 기반 흡착제를 이용한 수용액상 불소 및 비소 흡착에 관한 연구)

  • Lee, Joon Hak;Ji, Won Hyun;Lee, Jin Soo;Park, Seong Sook;Choi, Kung Won;Kang, Chan Ung;Kim, Sun Joon
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.667-675
    • /
    • 2020
  • An Alum-sludge based adsorbent (ASBA) was synthesized by the hydrothermal treatment of alum sludge obtained from settling basin in water treatment plant. ASBA was applied to remove fluoride and arsenic in artificially-contaminated aqueous solutions and mine drainage. The mineralogical crystal structure, composition, and specific surface area of ASBA were identified. The result revealed that ASBA has irregular pores and a specific surface area of 87.25 ㎡ g-1 on its surface, which is advantageous for quick and facile adsorption. The main mineral components of the adsorbent were found to be quartz(SiO2), montmorillonite((Al,Mg)2Si4O10(OH)2·4H2O) and albite(NaAlSi3O8). The effects of pH, reaction time, initial concentration, and temperature on removal of fluoride and arsenic were examined. The results of the experiments showed that, the adsorbed amount of fluoride and arsenic gradually decreased with increasing pH. Based on the results of kinetic and isotherm experiments, the maximum adsorption capacity of fluoride and arsenic were 7.6 and 5.6 mg g-1, respectively. Developed models of fluoride and arsenic were suitable for the Langmuir and Freundlich models. Moreover, As for fluoride and arsenic, the increase rate of adsorption concentration decreased after 8 and 12 hr, respectively, after the start of the reaction. Also, the thermodynamic data showed that the amount of fluoride and arsenic adsorbed onto ASBA increased with increasing temperature from 25℃ to 35℃, indicating that the adsorption was endothermic and non-spontaneous reaction. As a result of regeneration experiments, ASBA can be regenerated by 1N of NaOH. In the actual mine drainage experiment, it was found that it has relatively high removal rates of 77% and 69%. The experimental results show ASBA is effective as an adsorbent for removal fluoride and arsenic from mine drainage, which has a small flow rate and acid/neutral pH environment.